
Back

GBA Dev In
Linux

GCC for GBA for Linux
These are step by step instructions for building a gcc cross compiler for the gba for linux. I typed them as I installed

them on my second machine. It is an Athlon 900mhz, 256MB RAM, 6gig test partition with fresh Redhat 9 installed

(only updates and nVidia X11/OpenGL drivers installed), nVidia Gefore2 MX 32mb, SB Live, 3Com 3c905b NIC,

other generic cdrom/floppy.... those stats might be usefull since I will time all of the big compiles.

Step 0: Get A Working Linux System
Your by yourself on this one,Good Luck!

Step 1: Get The Sources

Program
What version I used

What is in it
Links

Binutils

binutils-2.11.2.tar.bz2

assembler, linker, objcopy,

other goodies...

(versions newer than this

create overlap errors with

crt0.o?)

(some of them complain

about --mcpu=arm7tdmi with

certain versions

of gcc! I am experimenting)

Binutils From

ftp.gnu.org

Mirror:Binutils From

mirrors.kernel.org

GCC

gcc-3.0.4.tar.gz

c/c++ compiler

(will experiment with newer

ones but gcc-3.3 gave me

trouble

though all I think it was

doing was passing

--mcpu=arm7tdmi to as!)

GCC From ftp.gnu.org

Mirror:GCC From

mirrors.kernel.org

Newlib
newlib-1.11.0.tar.gz

micro libc

Newlib From

sources.redhat.com

Mirror: still looking...

crtls v1.28
crtls.zip

start of rom/mb image.

crtls.zip from

www.devrs.com

Mirror: crtls.zip from

GBA Dev In Linux - GCC for GBA for Linux http://web.archive.org/web/20080422023611/linux....

1 de 5 03/03/10 21:07

a mirror

Step 2: Properly (tar/bunzip2/gunzip)ing
the source

What is happening Command Line Time It Took

Do this this way or you may have troubles!

We have to build binutils/gcc/newlib in a

seperate directory

from the source! so we create 3 directories.

mkdir build-binutils

mkdir build-gcc

mkdir build-newlib

how fast can you

type?

Now in each of those directories,

uncompress the related source

I will just give you one example you can do

the rest

(in build-binutils)

tar xfvj ../binutils-

2.11.2.tar.gz

(your path to binutils-

2.11.2.tar.gz may be

different)

not to long

Step 3: Building Build Tools
subStep 3.1: Building Binutils

What is happening Command Line Time It Took

Now we need to run configure inside the

binutils directory, from our build-utils

directory

with a few options

--target=arm-thumb-elf which means

build for arm (uh yeah)

--prefix=/somedir i don't use this but it

allows you to install the files

in a directory other than the default

/usr/local

./binutils-2.11.2

/configure --target=arm-

thumb-elf

3 seconds

Now we start the build, still in the build-

binutils directory we created.
make 5 minutes 17 seconds

Now we install the files to whatever you set

--prefix to or /usr/local

if you didn't use --prefix (still in the build-

binutils directory we created).

make install 35 seconds

subStep 3.2: Building GCC
What is happening Command Line Time It Took

Now we need to run configure inside the

gcc directory, from the build-gcc directory

with a few options

--target=arm-thumb-elf arm/thumb output

assembly

--with-cpu=arm7tdmi default processor

./gcc-3.0.4/configure

--target=arm-thumb-elf

--with-cpu=arm7tdmi

--with-newlib --enable-

multilib --enable-

interwork

1 minute

GBA Dev In Linux - GCC for GBA for Linux http://web.archive.org/web/20080422023611/linux....

2 de 5 03/03/10 21:07

type (there are alot of other ARMs)

--with-newlib use newlib instead of glibc

--enable-multilib not sure, I think it is to

help with interworking

--enable-interwork make arm and thumb

play nice together

--disable-threads don't use threads?

--enable-targets=arm-elf use elf format

for objects

--with-headers=../build-newlib/newlib-

1.11.0/newlib/libc/include/

use headers from our freshly decompressed

newlib (may have to change path)

--enable-languages="c" just c no c++ or

ada or whatever else gcc does...

--prefix=/somedir i don't use this but it

allows you to install the files

in a directory other than the default

/usr/local

--disable-threads --enable-

targets=arm-elf

--with-headers=../build-

newlib/newlib-1.11.0

/newlib/libc/include

--enable-languages="c"

(your newlib path may be

different)

(that is one line if you didn't

now)

Now we start the build, still in the build-gcc

directory we created.
make

7 minutes 52 seconds

(I thought it would

take longer....)

Now we install the files to whatever you set

--prefix to or /usr/local

if you didn't use --prefix (still in the build

directory we created).

make install

27 seconds

(gcc installs faster

then binutils?!)

subStep 3.3: Building Newlib
What is happening Command Line Time It Took

Now we need to run configure inside the

newlib directory, from our new build-newlib

directory

with a few options

--target=arm-thumb-elf which means

build for arm (uh yeah)

--prefix=/somedir i don't use this but it

allows you to install the files

in a directory other than the default

/usr/local

./newlib-1.11.0/configure

--target=arm-thumb-elf
5 seconds

Now we start the build, still in the build-

newlib directory we created.
make 5 minutes 46 seconds

Now we install the files to whatever you set

--prefix to or /usr/local

if you didn't use --prefix (still in the build

directory we created).

make install 1 minute 21 seconds

subStep 3.4: Building crtls
What is happening Command Line Time It Took

GBA Dev In Linux - GCC for GBA for Linux http://web.archive.org/web/20080422023611/linux....

3 de 5 03/03/10 21:07

After you have unzip'ed the crtls.zip file

just run it through our new assembler.

arm-thumb-elf-as CRT0.S

-o crt0.o
~0 seconds

You might want to get rid of these to. (yes you do)

/usr/local/arm-thumb-elf/lib/crt0.o

/usr/local/arm-thumb-elf/lib/redboot-crt0.o

/usr/local/arm-thumb-elf/lib/thumb/crt0.o

/usr/local/arm-thumb-elf/lib/thumb/redboot-crt0.o

how fast can you

type?

Step 4: Building Send Tools
subStep 4.1: Building mb (mbv2)

After you have downloaded and decompressed mblinux.tar.gz you, like me, have just found out

that you don't actually need to build it... (I forgot)

subStep 4.2: Building fl (flash advance)
Command What it does... Time It Took

After you have downloaded and

decompressed flgba.zip

compiling is simple

gcc fl.c -o fl

(that is x86 gcc not

arm-thumb-elf-gcc)

(I copy fl and mb to

/usr/local/bin so that they

are in path)

~1 second

Step 5: Testing it all
Here is a small program with makefile I wrote to test the build

First you need to copy that crt0.o you

created earlier, and lnkscript from crtls.zip

(same place you got CRT0.S from) to the

directory where test.c and it's makefile are

then you run this incredibly complex

command

make - for a .mb image or

make all - for a .mb and

.gba image

~1 second for make

all

then to send it over an mbv2 cable

make send or

mb -w 10 -s test.mb

(only if you have mb in your

path though!)

2-3 seconds, I forgot

to time it.

If you see a single white dot in the middle of gba screen you are finished

Go try my demos/PSUEDO tutorial if you are brave or go to www.gbadev.org for some other

tutorials

Credits/Other Reading
Who Where Note

Dooby His site
How I learned how to build GCC for GBA for Linux

Thanks Dooby!

GBA Dev In Linux - GCC for GBA for Linux http://web.archive.org/web/20080422023611/linux....

4 de 5 03/03/10 21:07

?? Cross GCC Howto Helped alittle... kind of old I think

Jason Wilkins devkitadv source

mostly just confused me, strange

buildscript/makefile

(can't remember if it was sh or make)...

Read this...

Back

This page was created using EMACS and The GIMP. It was tested with Mozilla

And if you where wondering where step 2.0, 3.0 or any other .0 it was 2=2.0,3=3.0....!

And and ^K ^Y made %30 percent of this file!

GBA Dev In Linux - GCC for GBA for Linux http://web.archive.org/web/20080422023611/linux....

5 de 5 03/03/10 21:07

