
Revolution

Graphics Library (GX)
Version 1.00

© 2006 Nintendo
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

Graphics Library (GX)
"Confidential"

These coded instructions, statements, and computer programs contain proprietary
information of Nintendo of America Inc. and/or Nintendo Company Ltd., and are pro-
tected by Federal copyright law. They may not be disclosed to third parties or copied
or duplicated in any form, in whole or in part, without the prior written consent of Nin-
tendo.

© 2006 Nintendo

TM and ® are trademarks of Nintendo.
Dolby, Pro Logic and the Double-D symbol are trademarks of Dolby Laboratories.

IBM is a trademark of International Business Machines Corporation.
Roland GS Sound Set is a trademark of Roland Corporation U.S.

All other trademarks and copyrights are property of their respective owners.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

i

Graphics Library (GX)
Version 1.00

Contents
Revision History ... I-xii
1 Introduction... I-1

1.1 Document organization... I-1
1.2 Syntax notes ... I-1
1.3 A note on pointers... I-2
1.4 Useful books ... I-2

2 Code example: onetri.c... I-3
3 Initialization... I-9

3.1 Video initialization ... I-9
3.2 Graphics initialization.. I-9
3.3 Graphics Processor (GP).. I-10

4 Vertex and primitive data.. I-11
4.1 Describing the vertex data .. I-12
4.2 Describing arrays.. I-14
4.3 Describing attribute data formats.. I-15
4.4 Drawing graphics primitives.. I-17

4.4.1 Primitive types... I-17
4.4.2 Points and lines... I-18
4.4.3 Rasterization rules .. I-19
4.4.4 Using vertex functions... I-20

4.5 Vertex data organization... I-22
4.5.1 Indexed vertex data .. I-25
4.5.2 Direct vertex data .. I-26
4.5.3 Mixture of direct and indexed data .. I-27

4.6 Display lists... I-28
4.6.1 Creating display lists ... I-28
4.6.2 Drawing primitives using display lists.. I-30
4.6.3 Effect on machine state .. I-31

4.7 GXDraw functions... I-31
5 Viewing... I-33

5.1 Loading a modelview matrix ... I-34
5.2 Setting a projection matrix .. I-35
5.3 Culling, clipping, and scissoring.. I-36
5.4 Viewport and scissoring.. I-37
5.5 Coordinate systems .. I-38
5.6 How to override the default matrix memory configuration .. I-39

6 Vertex lighting... I-41
6.1 Lighting pipeline.. I-41

6.1.1 Diffuse lights, diffuse attenuation and vertex normals... I-41
6.1.2 Local lights and range attenuation .. I-41
6.1.3 Spotlights, directional lights and angle attenuation ... I-41

6.2 Diffuse lighting equations.. I-43
6.3 Matrix memory .. I-44
6.4 Light parameters... I-44

6.4.1 Angle attenuation .. I-44
6.4.2 Distance attenuation ... I-45
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

ii Graphics Library (GX)
6.5 Channel parameters ... I-47
6.5.1 Channel colors .. I-47
6.5.2 Channel control ... I-47
6.5.3 Pre-lighting.. I-48

6.6 Specular lighting ... I-49
6.7 Vertex performance .. I-50
6.8 Lighting performance .. I-51

7 Texture coordinate generation.. I-53
7.1 Specifying texgens.. I-53
7.2 Other texture coordinate generation issues.. I-55
7.3 Texture coordinate generation performance... I-55

8 Texture mapping... I-57
8.1 Example: Drawing a textured triangle... I-58
8.2 Loading a texture into main memory .. I-60
8.3 Code describing a texture object .. I-60

8.3.1 Texel formats .. I-61
8.3.2 Texture Lookup Table (TLUT) formats.. I-63
8.3.3 Texture image formats .. I-63
8.3.4 Texture coordinate space ... I-64
8.3.5 Filter modes and LOD controls ... I-66

8.4 Loading texture objects... I-72
8.5 Loading Texture Lookup Tables (TLUTs) ... I-73
8.6 How to override the default texture configuration ... I-73

8.6.1 Texture regions ... I-74
8.6.2 Cached regions... I-75
8.6.3 TLUT regions .. I-76
8.6.4 Preloaded regions... I-76
8.6.5 Texture cache allocation ... I-82
8.6.6 TLUT allocation... I-82

8.7 Invalidating texture cache ... I-83
8.8 Changing the usage of TMEM regions ... I-83
8.9 Creating textures by copying the embedded frame buffer .. I-83
8.10 Z textures.. I-86
8.11 Texture performance .. I-88

9 Texture environment (TEV) .. I-89
9.1 Description.. I-89
9.2 Default texture pipeline configuration ... I-89
9.3 Number of active TEV stages ... I-90
9.4 GXSetTevOp .. I-90
9.5 Color/alpha combine operations ... I-91

9.5.1 Clamp modes.. I-93
9.6 Color inputs... I-95
9.7 Alpha inputs .. I-97
9.8 Example equations ... I-97
9.9 Alpha compare function .. I-99
9.10 Z textures.. I-100
9.11 Texture pipeline configuration... I-100

10 Indirect texture mapping... I-103
10.1 Setting up indirect texture stages ... I-105
10.2 Basic indirect texture processing .. I-107
10.3 Basic indirect texture functions ... I-108

10.3.1 Texture warping .. I-108
10.3.2 Environment-mapped bump-mapping (dX, dY, dZ) .. I-109
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

iii
10.4 Advanced indirect texture processing... I-110
10.4.1 Selecting “bump alpha” ... I-110
10.4.2 Dynamic matrices.. I-111
10.4.3 Selecting texture coordinates for texture LOD .. I-111
10.4.4 Adding texture coordinates from previous TEV stages I-111

10.5 Advanced indirect functions.. I-111
10.5.1 Texture tiling and pseudo-3D texturing ... I-111
10.5.2 Environment-mapped bump-mapping (dS, dT)... I-112
10.5.3 General indirect texturing .. I-113

11 Fog, Z-compare, blending, and dithering.. I-115
11.1 Fog.. I-115

11.1.1 Fog curves .. I-116
11.1.2 Fog parameters... I-118

11.2 Z-compare .. I-118
11.2.1 Z buffer format .. I-119

11.3 Blending.. I-120
11.3.1 Blend equation .. I-120
11.3.2 Blending parameters ... I-121
11.3.3 Logic operations.. I-122

11.4 Dithering ... I-123
12 Video output ... I-125

12.1 The copy pipeline.. I-125
12.1.1 Copy source .. I-125
12.1.2 Antialiasing and deflickering ... I-125
12.1.3 Gamma correction .. I-126
12.1.4 RGB to YUV.. I-127
12.1.5 Y scale .. I-127
12.1.6 Copy destination ... I-127
12.1.7 Clear color and Z for next frame ... I-127

12.2 Predefined render modes ... I-128
12.2.1 Double-strike, non-antialiased mode... I-129
12.2.2 Double-strike, antialiased mode.. I-129
12.2.3 Interlaced, non-antialiased, field-rendering mode... I-129
12.2.4 Interlaced, antialiased, field-rendering mode .. I-129
12.2.5 Interlaced, non-antialiased, frame-rendering, deflicker mode............................. I-130
12.2.6 Interlaced, non-antialiased, frame-rendering, non-deflicker mode...................... I-130
12.2.7 Interlaced, antialiased, frame-rendering, deflicker mode I-130

12.3 GX API default render mode... I-131
12.4 Embedded frame buffer formats ... I-131

12.4.1 48-bit format – non-antialiasing... I-132
12.4.2 96-bit super-sampling format – antialiasing .. I-132

12.5 External frame buffer format ... I-132
12.6 CPU direct EFB access .. I-133

13 Graphics FIFO.. I-135
13.1 Description.. I-135
13.2 Creating a FIFO .. I-137
13.3 Attaching and saving FIFOs ... I-138
13.4 FIFO status ... I-139
13.5 FIFO flow control .. I-140
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

iv Graphics Library (GX)
13.6 Draw synchronization functions .. I-141
13.6.1 GXDrawDone.. I-141
13.6.2 GXDrawSync .. I-141
13.6.3 FIFO breakpoint .. I-142
13.6.4 Abort frame ... I-143
13.6.5 VI synchronization... I-143

13.7 Draw synchronization methods... I-143
13.7.1 Double-buffering ... I-143
13.7.2 Triple-buffering.. I-144

13.8 Graphics FIFO vs. display list ... I-144
13.9 Notes about the write-gather pipe... I-144
13.10 GX verify ... I-145

14 Performance metrics .. I-147
14.1 Types of metrics ... I-147
14.2 GP front-end and texture-related metrics ... I-147

14.2.1 GP Counter 0 details... I-147
14.2.2 Counter 1 details ... I-149

14.3 Using performance counters... I-151
14.4 Vertex cache metrics .. I-151
14.5 Pixel metrics ... I-152
14.6 Memory metrics .. I-152

15 GX updates for HW2 .. I-155
15.1 Compatibility ... I-155
15.2 Bugs.. I-155
15.3 New HW2 features.. I-155

15.3.1 NBT indices can be separated.. I-156
15.3.2 Fractional shift works with 8-bit vertex attributes .. I-156
15.3.3 Renormalization and “post-transform” matrices added for texgens I-157
15.3.4 Line (but not point) aspect ratio fixed for field-mode rendering........................... I-158
15.3.5 New TEV compare functions added.. I-158
15.3.6 More flexibility in TEV for texture and raster color component swaps I-159
15.3.7 New TEV “constant” color registers, component selectable I-159
15.3.8 Subtractive “blend” mode.. I-160
15.3.9 New texture copy types (for both color and Z) .. I-161
15.3.10 Scissor box offset.. I-161

16 Limitations .. I-163
16.1 Antialiasing ... I-163
16.2 CPU access to the frame buffer.. I-163
16.3 Display lists... I-163
16.4 Vertex performance .. I-163
16.5 Matrix memory .. I-163
16.6 Texture.. I-163
16.7 Blending and logic operations... I-164
16.8 Sharing main memory resources.. I-164

17 Comparison to the Nintendo 64.. I-165
17.1 Display lists vs. immediate mode.. I-165
17.2 No microcoded processor... I-165
17.3 Vertex buffer ... I-165
17.4 Textures.. I-165
17.5 Winding order ... I-166
17.6 Video scaling .. I-166
17.7 Antialiasing ... I-166
17.8 Coplanar polygons.. I-166
17.9 FREE Z buffering, FREE blending.. I-166
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

v

18 Comparison to OpenGL.. I-169
18.1 Vertex description ... I-169
18.2 Matrices .. I-169
18.3 Lighting ... I-169
18.4 Texture coordinate generation.. I-170
18.5 Texture and multi-texture.. I-170
18.6 Polygon offset ... I-170

Appendix A.GX API functions ... I-171
A.1 Cpu2Efb.. I-171
A.2 Culling... I-172
A.3 DisplayList .. I-172
A.4 Draw ... I-172
A.5 Framebuffer .. I-173
A.6 Geometry .. I-175
A.7 GfxFIFO .. I-177
A.8 Indirect .. I-179
A.9 Lighting ... I-181
A.10 Management... I-183
A.11 Performance ... I-184
A.12 PixelProc... I-185
A.13 Tev.. I-186
A.14 Texture.. I-188
A.15 Transform ... I-191

Appendix B.GXInit defaults ... I-193
Appendix C.Display list format .. I-201

C.1 Display list opcodes .. I-201
C.2 Attribute order requirements ... I-202
C.3 Example display list (primitives only) .. I-203
C.4 State commands... I-204

C.4.1 Set_TextureMode0 ... I-206
C.4.2 Set_TextureMode1 ... I-206
C.4.3 Set_TextureImage0 .. I-206
C.4.4 Set_TextureImage1 .. I-207
C.4.5 Set_TextureImage2 .. I-207
C.4.6 Set_TextureImage3 .. I-207
C.4.7 Set_TextureTLUT ... I-208
C.4.8 SU_TS0 .. I-208
C.4.9 SU_TS1 .. I-208

Appendix D.Nintendo GameCube texture formats.. I-209
D.1 Texel formats .. I-209
D.2 Texture tile formats ... I-210
D.3 Texture image formats.. I-211

Appendix E.Memory issues .. I-213
E.1 Rules of alignment .. I-213
E.2 Alignment assistance functions .. I-214
E.3 Data coherency... I-214

E.3.1 About the DVD library loading graphics data .. I-216
E.3.2 CPU generating or modifying graphics data ... I-216

Code Examples
Code 1 - onetri.c ... I-4
Code 2 - Vertex descriptor .. I-12
Code 3 - GXSetVtxAttrFmt.. I-16
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

vi Graphics Library (GX)
Code 4 - GXSetPointSize ... I-18
Code 5 - GXSetLineSize... I-18
Code 6 - Vertex functions ... I-20
Code 7 - Drawing primitives using vertex functions .. I-21
Code 8 - Using vertex functions.. I-21
Code 9 - Indexed vs. direct compression example ... I-23
Code 10 - GXSetArray .. I-25
Code 11 - Arrays of vertex structures ... I-26
Code 12 - Direct vertex data ... I-27
Code 13 - Mixture of direct and indexed data ... I-27
Code 14 - GXBeginDisplayList ... I-29
Code 15 - geoPalette/display object calls ... I-29
Code 16 - Sample array containing display list ... I-30
Code 17 - GXCallDisplayList .. I-30
Code 18 - GX Draw functions ... I-32
Code 19 - GXLoadPosMtxImm ... I-34
Code 20 - GXSetProjection... I-35
Code 21 - GXSetViewport... I-38
Code 22 - GXSetScissor... I-38
Code 23 - GXProject... I-39
Code 24 - GXSetNumChans... I-41
Code 25 - GXInitLightAttn ... I-44
Code 26 - GXInitLightSpot .. I-45
Code 27 - GXInitLightDistAttn... I-46
Code 28 - GXSetChanAmbColor .. I-47
Code 29 - GXSetChanCtrl .. I-47
Code 30 - Pre-lighting API .. I-48
Code 31 - GXInitLightShininess() ... I-49
Code 32 - Setting lighting controls and texture coordinate generation ... I-51
Code 33 - GXSetTexCoordGen .. I-53
Code 34 - GXSetNumTexGens .. I-54
Code 35 - GXSetTexCoordScaleManually ... I-55
Code 36 - GXSetTexCoordCylWrap ... I-55
Code 37 - Simple texture example.. I-58
Code 38 - Initializing or changing a texture object .. I-61
Code 39 - Texture component promotion to 8 bits.. I-62
Code 40 - GXInitTexObjLOD .. I-66
Code 41 - GXLoadTexObj .. I-72
Code 42 - Loading TLUTs... I-73
Code 43 - GXInitTexCacheRegion ... I-75
Code 44 - GXInitTlutRegion.. I-76
Code 45 - GXInitTexPreLoadRegion() .. I-76
Code 46 - GXPreLoadEntireTexture() .. I-81
Code 47 - GXLoadTexObjPreLoaded() .. I-82
Code 48 - GXSetTexRegionCallback ... I-82
Code 49 - GXSetTlutRegionCallback ... I-82
Code 50 - Invalidating texture memory ... I-83
Code 51 - Texture copy functions ... I-85
Code 52 - GXSetZTexture .. I-87
Code 53 - GXSetTevStages ... I-90
Code 54 - GXSetTevOp.. I-90
Code 55 - GXSetTevColorOp, GXSetTevAlphaOp... I-92
Code 56 - GXSetTevClampMode ... I-93
Code 57 - GXSetTevColorIn ... I-95
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

vii
Code 58 - Setting constant color... I-96
Code 59 - GXSetTevAlphaIn .. I-97
Code 60 - Pass texture color .. I-97
Code 61 - Modulate .. I-98
Code 62 - Modulate 2X ... I-98
Code 63 - Add... I-98
Code 64 - Subtract.. I-98
Code 65 - Blend .. I-99
Code 66 - GXSetAlphaCompare... I-99
Code 67 - GXSetTevOrder ... I-100
Code 68 - GXSetIndTexOrder .. I-106
Code 69 - GXSetIndTexScale... I-106
Code 70 - GXSetIndTexMtx.. I-108
Code 71 - GXSetTevIndWarp ... I-108
Code 72 - GXSetTevIndBumpXYZ ... I-109
Code 73 - GXSetTevIndTile.. I-111
Code 74 - GXSetTexCoordScaleManually ... I-112
Code 75 - GXSetTevIndBumpST.. I-112
Code 76 - GXSetTevIndRepeat .. I-113
Code 77 - GXSetTevIndirect... I-113
Code 78 - GXSetTevDirect ... I-113
Code 79 - GXSetFog .. I-118
Code 80 - Fog range adjustment functions... I-118
Code 81 - GXSetZMode ... I-119
Code 82 - GXSetBlendMode .. I-120
Code 83 - GXSetDither ... I-123
Code 84 - GXSetDispCopySrc.. I-125
Code 85 - GXSetCopyFilter .. I-126
Code 86 - GXSetCopyClamp.. I-126
Code 87 - GXSetDispCopyGamma .. I-126
Code 88 - GXSetDispCopyYScale.. I-127
Code 89 - GXCopyDisp .. I-127
Code 90 - GXSetCopyClear.. I-127
Code 91 - GXSetPixelFormat ... I-132
Code 92 - Functions to configure CPU-EFB accesses ... I-133
Code 93 - Functions for CPU-EFB access ... I-133
Code 94 - Implementation of GXPeek and GXPoke... I-134
Code 95 - Functions to manipulate 16-bit Z formats... I-134
Code 96 - GXFifoObj .. I-137
Code 97 - FIFO initialization functions .. I-138
Code 98 - FIFO basic inquiry functions... I-138
Code 99 - FIFO attachment functions... I-138
Code 100 - FIFO attachment inquiry functions ... I-138
Code 101 - GXSaveCPUFifo .. I-139
Code 102 - FIFO status functions ... I-139
Code 103 - APIs to get and set the current GX thread ... I-140
Code 104 - GXDrawDone synchronization commands .. I-141
Code 105 - GXDrawSync synchronization commands ... I-142
Code 106 - GXEnableBreakPt .. I-142
Code 107 - GXDisableBreakPt ... I-142
Code 108 - GXSetBreakPtCallback .. I-142
Code 109 - GXAbortFrame ... I-143
Code 110 - VI synchronization commands ... I-143
Code 111 - Double-buffer copy synchronization... I-143
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

viii Graphics Library (GX)
Code 112 - Single-buffer copy synchronization .. I-144
Code 113 - APIs to control the write-gather pipe .. I-145
Code 114 - APIs to control verification.. I-145
Code 115 - GP metric functions.. I-147
Code 116 - Counting a metric ... I-151
Code 117 - Vertex cache metric functions .. I-151
Code 118 - Pixel metric functions ... I-152
Code 119 - Memory metric functions .. I-152
Code 120 - GXSetTexCoordGen2 .. I-157
Code 121 - GXSetTevSwapMode, GXSetTevSwapModeTable ... I-159
Code 122 - GXSetScissorBoxOffset ... I-161
Code 123 - Aligning Nintendo GameCube winding order with N64 .. I-166
Code 124 - Cpu2Efb ... I-171
Code 125 - Culling .. I-172
Code 126 - DisplayList .. I-172
Code 127 - Draw... I-172
Code 128 - Framebuffer.. I-173
Code 129 - Geometry ... I-175
Code 130 - GfxFIFO ... I-177
Code 131 - Indirect ... I-179
Code 132 - Lighting... I-181
Code 133 - Management .. I-183
Code 134 - Performance... I-184
Code 135 - PixelProc .. I-185
Code 136 - Tev ... I-186
Code 137 - Texture ... I-188
Code 138 - Transform... I-191
Code 139 - GXInit defaults.. I-193
Code 140 - Code necessary to utilize Example_Display_List... I-204
Code 141 - Set_TextureMode0... I-206
Code 142 - Set_TextureMode1... I-206
Code 143 - Set_TextureImage0.. I-206
Code 144 - Set_TextureImage1.. I-207
Code 145 - Set_TextureImage2.. I-207
Code 146 - Set_TextureImage3.. I-207
Code 147 - Set_TextureTLUT... I-208
Code 148 - SU_TS0.. I-208
Code 149 - SU_TS1.. I-208
Code 150 - DVDSetAutoInvalidation... I-216
Code 151 - Commands to flush the CPU data cache ... I-216

Equations
Equation 1 - Attribute address .. I-14
Equation 2 - Vertex position transform.. I-34
Equation 3 - Vertex normal transform ... I-34
Equation 4 - Perspective projection .. I-35
Equation 5 - Orthographic projection .. I-35
Equation 6 - Clip space to screen space conversion .. I-37
Equation 7 - Normal matrix index.. I-40
Equation 8 - Light parameters... I-43
Equation 9 - Rasterized color.. I-43
Equation 10 - Color channel ... I-43
Equation 11 - Material source ... I-43
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

ix
Equation 12 - Channel enable .. I-43
Equation 13 - Sum of lights in a channel .. I-43
Equation 14 - Ambient source... I-43
Equation 15 - Diffuse attenuation.. I-43
Equation 16 - Diffuse angle and distance attenuation .. I-44
Equation 17 - Pre-lighting ... I-48
Equation 18 - Specular attenuation... I-49
Equation 19 - Texture coordinate generation.. I-53
Equation 20 - Transforming src_param by 2x4 and 3x4 matrices .. I-53
Equation 21 - Input coordinates .. I-53
Equation 22 - Pass texture color... I-97
Equation 23 - Modulate... I-98
Equation 24 - Modulate 2X ... I-98
Equation 25 - Add ... I-98
Equation 26 - Subtract .. I-98
Equation 27 - Blend .. I-99
Equation 28 - Alpha compare ... I-99
Equation 29 - Sample alpha compare... I-99
Equation 30 - Dynamic indirect matrices .. I-111
Equation 31 - Blending.. I-120
Equation 32 - Bayer matrix ... I-123
Equation 33 - 5-bit dithering (ideal)... I-123
Equation 34 - 5-bit dithering (approximation actually used).. I-123
Equation 35 - 6-bit dithering (ideal)... I-123
Equation 36 - 6-bit dithering (approximation actually used).. I-123
Equation 37 - RGB to YUV conversion ... I-133
Equation 38 - Miss rate calculation ... I-149
Equation 39 - Attribute address for separated NBT indices.. I-156
Equation 40 - Index adjustments for NBT offsets ... I-156
Equation 41 - Regular TEV output .. I-158
Equation 42 - Compare TEV output.. I-158
Equation 43 - Subtractive blend operation.. I-160

Figures
Figure 1 - Schematic of the GP... I-10
Figure 2 - Vertex and attribute description.. I-12
Figure 3 - Vertex Attribute Format Table (VAT) .. I-15
Figure 4 - Graphics primitives ... I-17
Figure 5 - Point definition .. I-18
Figure 6 - Line definition ... I-19
Figure 7 - Polygon rasterization rules ... I-20
Figure 8 - Flow of indexed vertex data.. I-22
Figure 9 - Flow of direct vertex data ... I-24
Figure 10 - Indexed vertex data .. I-25
Figure 11 - Display list flow ... I-28
Figure 12 - Modelview and projection data path ... I-33
Figure 13 - Clipping and culling data path .. I-36
Figure 14 - Clip coordinates.. I-37
Figure 15 - Coordinate system transformations.. I-38
Figure 16 - Matrix memory.. I-39
Figure 17 - Associating lights with color channels .. I-42
Figure 18 - Lighting vectors .. I-43
Figure 19 - Spotlight functions .. I-45
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

x Graphics Library (GX)
Figure 20 - Distance attenuation functions ... I-46
Figure 21 - Specular lighting vectors .. I-49
Figure 22 - GXInitLightShininess values... I-50
Figure 23 - Map-relative texture coordinates .. I-64
Figure 24 - Linear filter—clamp, repeat, mirror ... I-65
Figure 25 - Nearest filter—clamp, repeat, mirror .. I-66
Figure 26 - Pixel projected in texture space example ... I-66
Figure 27 - LOD calculation .. I-67
Figure 28 - LOD bias... I-68
Figure 29 - Anisotropic filtering ... I-69
Figure 30 - Mipmap pyramid for the largest texture size... I-70
Figure 31 - GX_NEAR .. I-71
Figure 32 - GX_LINEAR ... I-71
Figure 33 - Default TMEM configuration ... I-74
Figure 34 - Mipmap in TMEM ... I-77
Figure 35 - Planar texture in TMEM.. I-78
Figure 36 - 32-bit planar texture in TMEM .. I-79
Figure 37 - Color index mipmap in TMEM .. I-80
Figure 38 - 32-bit mipmap in TMEM ... I-81
Figure 39 - Texture copy data path... I-84
Figure 40 - Copying small textures into a larger texture in main memory....................................... I-85
Figure 41 - Z texture block diagram .. I-87
Figure 42 - TEV block diagram ... I-89
Figure 43 - Default texture pipeline... I-90
Figure 44 - TEV operations... I-92
Figure 45 - TEV stage color inputs ... I-95
Figure 46 - TEV stage alpha inputs .. I-97
Figure 47 - Texture pipeline control .. I-101
Figure 48 - Indirect texture operation.. I-103
Figure 49 - Tiled texture mapping ... I-103
Figure 50 - Pseudo-3D textures.. I-104
Figure 51 - Regular texture functional diagram... I-105
Figure 52 - Regular and indirect texture functional diagram ... I-106
Figure 53 - Texture coordinate sharing example .. I-107
Figure 54 - Indirect texture processing, part 1 .. I-107
Figure 55 - Indirect texture processing, part 2 .. I-110
Figure 56 - Fog range adjustment... I-115
Figure 57 - Linear fog curve.. I-116
Figure 58 - Exponential fog curve ... I-116
Figure 59 - Exponential squared fog curve ... I-117
Figure 60 - Reverse exponential fog curve ... I-117
Figure 61 - Reverse exponential squared fog curve ... I-117
Figure 62 - EFB-to-XFB copy pipeline .. I-125
Figure 63 - Render mode structure, related calls and hardware modules I-128
Figure 64 - Double-strike, non-antialiased mode .. I-129
Figure 65 - Interlaced, non-antialiased, field-rendering mode .. I-129
Figure 66 - Interlaced, non-antialiased, frame-rendering, deflicker mode I-130
Figure 67 - Interlaced, antialiased, frame-rendering, deflicker mode.. I-130
Figure 68 - Overlapping copy.. I-131
Figure 69 - XFB format in main memory... I-132
Figure 70 - GXFifoObj... I-135
Figure 71 - Immediate mode... I-136
Figure 72 - Multi-buffer mode.. I-137
Figure 73 - Texgen computation path ... I-157
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

xi
Figure 74 - Texel formats.. I-209
Figure 75 - Texture tile formats... I-210
Figure 76 - Texture image formats.. I-212
Figure 77 - Data coherency .. I-215

Tables
Table 1 - Vertex attribute order requirements ... I-13
Table 2 - Vertex performance ... I-51
Table 3 - Texture coordinate generation order ... I-54
Table 4 - Texel formats ... I-62
Table 5 - TLUT formats... I-63
Table 6 - Mipmap minimum filter modes... I-72
Table 7 - Texture copy formats and conversion notes.. I-84
Table 8 - Texture performance ... I-88
Table 9 - GXTevMode types ... I-91
Table 10 - Correspondence between TEV input and output register names I-93
Table 11 - Clamp enable and clamp mode ... I-94
Table 12 - 16-bit Z buffer formats ... I-119
Table 13 - Blending parameters.. I-121
Table 14 - Logic operations .. I-122
Table 15 - Memory metrics ... I-153
Table 16 - Color or alpha compare operations ... I-158
Table 17 - Color-only compare operations.. I-158
Table 18 - Alpha-only compare operations ... I-158
Table 19 - Color and alpha constant register values .. I-159
Table 20 - New GXTexFmt enumerated values.. I-161
Table 21 - Display list opcodes ... I-201
Table 22 - Vertex index stream order requirements ... I-202
Table 23 - Example_Display_List ... I-203
Table 24 - Memory alignment rules .. I-213
Table 25 - Alignment assistance functions ... I-214
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

xii Graphics Library (GX)
Revision History

Revision No. Date
Revised

Items
(Chapter) Description Revised By

1-Mar-2006 3/1/2006 - First release by Nintendo of America, Inc. -
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

1

1 Introduction
The Graphics Library (GX) is a programmer’s interface to the Nintendo GameCube™ Graphics Processor
(GP). We intend GX to be as thin as possible in order to achieve high performance, but it must also provide
a logical and straightforward view of the hardware. Our design goal for GX is to provide a default configu-
ration of the hardware so that, initially, the programmer can concentrate on the basics without being over-
whelmed by unnecessary details. Later, as the hardware becomes more familiar, programmers can easily
override the default configuration to expose more flexibility and features.

1.1 Document organization
This document serves as a starting point for graphics programmers to learn about Nintendo GameCube's
graphics capabilities. Chapters are organized as follows:

• Chapter 2 presents a simple code example.

• Chapter 3 discusses system initialization and presents a Graphics Processor block diagram.

• Chapters 4-12 document the GX functions to control the graphics pipeline (roughly in pipeline order).

• Chapter 13 explains the CPU-to-graphics interface in more detail.

• Chapter 14 discusses how to gather performance statistics, the CPU-to-EFB interface, and the GX
verify system.

• Chapter 15 explains the additional features of HW2 and how they are supported by GX.

• Chapter 16 lists non-orthogonal features and warnings for developers.

• Chapters 17-18 compare GX to two existing systems: Nintendo 64 (N64) and OpenGL.

• Appendix A lists all the GX API function calls. (For detailed information about each function, refer to the
GX pages in the online Dolphin Reference Manual.)

• Appendix B lists the default state set by GXInit.

• Appendix C provides more details on the display list format.

• Appendix D outlines the texture format used by Nintendo GameCube.

• Appendix E discusses in-memory data alignment and coherence issues.

1.2 Syntax notes
All of the Graphics library functions are prefixed by “GX,” Video Interface library functions by “VI,” and
Matrix-Vector library functions by “MTX.” For details on these other libraries, refer to the corresponding
sections in this guide. Functions prefixed with “OS” and “PAD” are described in “Operating System” and
“Controller Library (PAD),” respectively, in the Nintendo GameCube Programmer's Guide.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

2 Graphics Library (GX)
While some VI and MTX functions are required to write a basic application, this overview is concerned pri-
marily with the GX library. GX functions follow the naming conventions listed below.

Note: Here, and in other places throughout the document, an asterisk (*) is used to indicate a wildcard.

• GXSet* functions immediately set state in the graphics hardware. More accurately, they send state
commands through a command FIFO which is then read by the Graphics Processor and routed to the
proper register(s) (see "13 Graphics FIFO" on page 135).

• GXInit* functions precompile state registers, which are stored in various types of objects (struc-
tures).

• GXLoad* functions set indexed state, usually from a precompiled object (structure). Indexed state
includes light parameters, matrices, texture state, etc.

• GXWrite* functions write data directly to CPU-accessible registers and thus set state asynchronously
with the graphics command pipeline.

• GXSet* functions read state back from a shadow copy of the state kept by the GX API.

• GXRead* functions read data directly from CPU-accessible registers.

The GX API uses many enumerated types and several structure types. A structure type will be suffixed by
Obj, Region, or List. GXColor is also a structure type. Any other type without these suffixes is an enu-
merated type.

1.3 A note on pointers
The GX API sometimes expects pointers as arguments to its functions. The Nintendo GameCube operat-
ing system (see “Operating System” in the Nintendo GameCube Programmer’s Guide) sets up the Gekko
CPU to treat virtual addresses in a manner similar to a MIPS CPU. That is, the most significant bits (MSBs)
of a virtual address indicate whether the target data is mapped to cached or uncached memory. The rest of
the bits are the physical address of the data. The Nintendo GameCube Graphics Processor (GP) ignores
these MSBs and therefore is only concerned with physical addresses. The application is not required to
convert virtual addresses to physical addresses on behalf of either the Graphics Processor or the GX API.

In general, the application will be working with cache-mapped data. If the application is accessing the
same data as the Graphics Processor, the application must be careful to flush the data from the CPU
cache before the Graphics Processor uses it. The Graphics Processor has no visibility to data in the CPU
cache. For examples, see Appendix E.

1.4 Useful books
This document assumes that you know how to program in the C language, and that are you are familiar
with 3D graphics programming and common 3D APIs such as OpenGL or Direct3D. If this is not the case,
you might want to do some preparatory reading. Here are some useful sources (check your local book-
store or library for the latest editions):

Foley, James D., et al., Computer Graphics: Principles and Practice, 2nd Ed., Addison-Wesley, Reading,
MA, 1990.

Kempf, Renate and Chris Frazier (eds.), OpenGL Reference Manual, 2nd Ed., Addison-Wesley, Reading,
MA, 1997.

Woo, Mason, et al., OpenGL Programming Guide, 2nd Ed., Addison-Wesley, Reading, MA, 1997.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

3

2 Code example: onetri.c
Onetri.c is a fairly simple example that shows the basics of initializing graphics, making vertex formats,
and drawing some flat-shaded primitives. All the data and code are included in a single file. This demo is
also available in the source tree at /dolphin/build/demos/gxdemo/src/Simple/smp-onetri.c.

Note: Despite the name, this demo draws more than one triangle.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

4 Graphics Library (GX)
Code 1 - onetri.c

#include <demo.h>

/*---*
 Model Data
 ---/
#define STRUT_LN 130 // long side of strut
#define STRUT_SD 4 // short side of strut
#define JOINT_SD 10 // joint is a cube

/*---*
 The macro ATTRIBUTE_ALIGN provides a convenient way to align initialized
 arrays. Alignment of vertex arrays to 32B IS NOT required, but may result
 in a slight performance improvement.
 ---/
s16 Verts_s16[] ATTRIBUTE_ALIGN(32) =
{
// x y z
 -STRUT_SD, STRUT_SD, -STRUT_SD, // 0
 STRUT_SD, STRUT_SD, -STRUT_SD, // 1
 STRUT_SD, STRUT_SD, STRUT_SD, // 2
 -STRUT_SD, STRUT_SD, STRUT_SD, // 3
 STRUT_SD, -STRUT_SD, -STRUT_SD, // 4
 STRUT_SD, -STRUT_SD, STRUT_SD, // 5
 STRUT_SD, STRUT_LN, -STRUT_SD, // 6
 STRUT_SD, STRUT_LN, STRUT_SD, // 7
 -STRUT_SD, STRUT_LN, STRUT_SD, // 8
 -STRUT_SD, STRUT_SD, -STRUT_LN, // 9
 STRUT_SD, STRUT_SD, -STRUT_LN, // 10
 STRUT_SD, -STRUT_SD, -STRUT_LN, // 11
 STRUT_LN, STRUT_SD, -STRUT_SD, // 12
 STRUT_LN, STRUT_SD, STRUT_SD, // 13
 STRUT_LN, -STRUT_SD, STRUT_SD, // 14
 -JOINT_SD, JOINT_SD, -JOINT_SD, // 15
 JOINT_SD, JOINT_SD, -JOINT_SD, // 16
 JOINT_SD, JOINT_SD, JOINT_SD, // 17
 -JOINT_SD, JOINT_SD, JOINT_SD, // 18
 JOINT_SD, -JOINT_SD, -JOINT_SD, // 19
 JOINT_SD, -JOINT_SD, JOINT_SD, // 20
 -JOINT_SD, -JOINT_SD, JOINT_SD // 21
};

u8 Colors_rgba8[] ATTRIBUTE_ALIGN(32) =
{
// r, g, b, a
 21, 21, 25, 255, // 0
 40, 40, 40, 255, // 1
 57, 57, 55, 255 // 2
};

/*---*
 Forward references
 ---/
void main (void);
static void CameraInit (Mtx v);
static void DrawInit (void);
static void DrawTick (Mtx v);
static void AnimTick (Mtx v);
static void PrintIntro (void);

/*---*
 Application main loop
 ---/
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code example: onetri.c 5
void main (void)
{
 Mtx v; // view matrix
 PADStatus pad[PAD_MAX_CONTROLLERS]; // Controller state

 pad[0].button = 0;

 DEMOInit(NULL); // Init os, pad, gx, vi

 CameraInit(v); // Initialize the camera.
 DrawInit(); // Define my vertex formats and set array pointers.

 while(!pad[0].button)
 {
 DEMOBeforeRender();
 DrawTick(v); // Draw the model.
 DEMODoneRender();
 AnimTick(v); // Update animation.
 PADRead(pad);
 }

 OSHalt("End of demo");
}

/*---*
 Functions
 ---/

/*---*
 Name: CameraInit

 Description: Initialize the projection matrix and load into hardware.
 Initialize the view matrix.

 Arguments: v view matrix

 Returns: none
 ---/
static void CameraInit (Mtx v)
{
 Mtx44 p; // projection matrix
 Vec up = {0.20F, 0.97F, 0.0F};
 Vec camLoc = {90.0F, 110.0F, 13.0F};
 Vec objPt = {-110.0F, -70.0F, -190.0F};
 f32 left = 24.0F;
 f32 top = 32.0F;
 f32 near = 50.0F;
 f32 far = 2000.0F;

 MTXFrustum(p, left, -left, -top, top, near, far);
 GXSetProjection(p, GX_PERSPECTIVE);

 MTXLookAt(v, &camLoc, &up, &objPt);
}

/*---*
 Name: DrawInit

 Description: Initializes the vertex attribute format 0, and sets
 the array pointers and strides for the indexed data.

 Arguments: none

 Returns: none
 ---/
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

6 Graphics Library (GX)
static void DrawInit(void)
{
 GXColor black = {0, 0, 0, 0};

 GXSetCopyClear(black, GX_MAX_Z24);

 // Set current vertex descriptor to enable position and color0.
 // Both use 8b index to access their data arrays.
 GXClearVtxDesc();
 GXSetVtxDesc(GX_VA_POS, GX_INDEX8);
 GXSetVtxDesc(GX_VA_CLR0, GX_INDEX8);

 // Position has 3 elements (x,y,z), each of type s16,
 // no fractional bits (integers)
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_S16, 0);

 // Color 0 has 4 components (r, g, b, a), each component is 8b.
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0);

 // stride = 3 elements (x,y,z) each of type s16
 GXSetArray(GX_VA_POS, Verts_s16, 3*sizeof(s16));
 // stride = 4 elements (r,g,b,a) each of type u8
 GXSetArray(GX_VA_CLR0, Colors_rgba8, 4*sizeof(u8));

 // Initialize lighting, texgen, and tev parameters
 GXSetNumChans(1); // default, color = vertex color
 GXSetNumTexGens(0); // no texture in this demo
 GXSetTevOrder(GX_TEVSTAGE0, GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR0A0);
 GXSetTevOp(GX_TEVSTAGE0, GX_PASSCLR);
}

/*---*
 Name: Vertex

 Description: Create my vertex format

 Arguments: v 8-bit position index
 c 8-bit color index

 Returns: none
 ---/
static inline void Vertex(u8 v, u8 c)
{
 GXPosition1x8(v);
 GXColor1x8(c);
}

/*---*
 Name: DrawFsQuad

 Description: Draw a flat-shaded quad.

 Arguments: v0 8-bit position index 0
 v1 8-bit position index 1
 v2 8-bit position index 2
 v3 8-bit position index 3
 c 8-bit color index

 Returns: none
 ---/
static inline void DrawFsQuad(
 u8 v0,
 u8 v1,
 u8 v2,
 u8 v3,
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code example: onetri.c 7
 u8 c)
{
 Vertex(v0, c);
 Vertex(v1, c);
 Vertex(v2, c);
 Vertex(v3, c);
}

/*---*
 Name: DrawTick

 Description: Draw the model once. Replicates a simple strut model
 many times in the x, y, z directions to create a dense
 3D grid. GXInit makes GX_PNMTX0 the default matrix.

 Arguments: v view matrix

 Returns: none
 ---/
static void DrawTick(Mtx v)
{
 f32 x; // Translation in x.
 f32 y; // Translation in y.
 f32 z; // Translation in z.
 Mtx m; // Model matrix.
 Mtx mv; // Modelview matrix.

 MTXIdentity(m);

 for(x = -10*STRUT_LN; x < 2*STRUT_LN; x += STRUT_LN)
 {
 for(y = -10*STRUT_LN; y < STRUT_LN; y += STRUT_LN)
 {
 for(z = STRUT_LN; z > -10*STRUT_LN; z -= STRUT_LN)
 {
 MTXRowCol(m, 0, 3) = x;
 MTXRowCol(m, 1, 3) = y;
 MTXRowCol(m, 2, 3) = z;
 MTXConcat(v, m, mv);
 GXLoadPosMtxImm(mv, GX_PNMTX0);

 GXBegin(GX_QUADS, GX_VTXFMT0, 36); //4 vtx/qd x 9 qd = 36 vtx
 DrawFsQuad(8, 7, 2, 3, 0);
 DrawFsQuad(1, 2, 7, 6, 1);
 DrawFsQuad(1, 0, 9, 10, 2);
 DrawFsQuad(4, 1, 10, 11, 1);
 DrawFsQuad(1, 12, 13, 2, 2);
 DrawFsQuad(2, 13, 14, 5, 0);
 DrawFsQuad(18, 15, 16, 17, 2);
 DrawFsQuad(20, 17, 16, 19, 1);
 DrawFsQuad(20, 21, 18, 17, 0);
 GXEnd();
 }
 }
 }
}

/*---*
 Name: AnimTick

 Description: Moves viewpoint through the grid. Loops animation so
 that it appears viewpoint is continously moving forward.

 Arguments: v view matrix

© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

8 Graphics Library (GX)
 Returns: none
 ---/
static void AnimTick(Mtx v)
{
 static u32 ticks = 0; // Counter.
 Mtx fwd; // Forward stepping translation matrix.
 Mtx back; // Loop back translation matrix.

 u32 animSteps = 100;
 f32 animLoopBack = (f32)STRUT_LN;
 f32 animStepFwd = animLoopBack / animSteps;

 MTXTrans(fwd, 0, 0, animStepFwd);
 MTXTrans(back, 0, 0, -animLoopBack);

 MTXConcat(v, fwd, v);
 if((ticks % animSteps) == 0)
 MTXConcat(v, back, v);

 ticks++;
}

The following library functions are explained in the following sections:

• DEMOInit ("3.1 Video initialization" on page 9).

• GXInit ("3.2 Graphics initialization" on page 9).

• GXClearVtxDesc, GXSetVtxDesc ("4.1 Describing the vertex data" on page 12).

• GXSetArray ("4.2 Describing arrays" on page 14 and "4.5.1 Indexed vertex data" on page 25).

• GXSetVtxAttrFmt ("4.3 Describing attribute data formats" on page 15).

• GXBegin/GXEnd ("4.4 Drawing graphics primitives" on page 17).

• GXPosition, GXColor ("4.4.1 Primitive types" on page 17).

• GXLoadPosMatrixImm ("5.1 Loading a modelview matrix" on page 34).

• GXSetProjection ("5.2 Setting a projection matrix" on page 35).

• GXSetNumChans ("6.1.3 Spotlights, directional lights and angle attenuation" on page 41).

• GXSetNumTexGens ("7.1 Specifying texgens" on page 53).

• GXSetTevOp ("9.3 Number of active TEV stages" on page 90)

• GXSetTevOrder ("9.11 Texture pipeline configuration" on page 100).

• GXSetCopyClear ("12.1.7 Clear color and Z for next frame" on page 127).

All libraries available in Nintendo GameCube can be accessed using a single header file, <dolphin.h>.
This header file is included here by way of the <demo.h> header file.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

9

3 Initialization

3.1 Video initialization
In the preceding code segment, the DEMOInit function initializes the operating system, Controller, graph-
ics, and video. The DEMOInit function takes a parameter that is a pointer to the render mode to be used.
If you pass in a NULL pointer, then a default mode is chosen based upon the video standard.

For NTSC, the default render mode is 640x480, non-antialiased, double-buffered, deflickered, with a
frame-rendering rate of 30Hz. On the 640x480 screen, some pixels are trimmed off to account for over-
scan. Currently, DEMOInit trims 16 pixels from the top and bottom of the screen, resulting in an actual
size of 640x448. For more information about render modes, see "12 Video output" on page 125 or refer to
the relevant pages in the Dolphin Reference Manual (HTML).

The DEMO library encapsulates common functionality for the Nintendo GameCube demo programs. For
more information on the DEMO library, refer to the Demonstration Library (DEMO) section in this guide.

3.2 Graphics initialization
The Graphics Processor (GP) comes out of reset with unknown register values. The GXInit function is
used to set all the registers in the GP to default values. In the code example, GXInit is called by way of
DEMOInit.

GXInit also initializes a FIFO in DRAM that is used to send graphics commands and data from the CPU
to the GP (for more information on FIFO, see "13 Graphics FIFO" on page 135). The FIFO write port is
attached to the CPU and the FIFO read port is attached to the GP. This configuration is known as immedi-
ate-mode, because graphics commands are sent immediately from the CPU to the GP as they are exe-
cuted. In immediate-mode, the GP will interrupt the CPU when the FIFO is nearly filled, and the GX library
will automatically suspend the application.

Note: In multithreaded applications, you must designate a single thread as the “GX thread”. This is the
thread that will be suspended when the FIFO is nearly filled, and should be the only thread gener-
ating graphics commands.

It is also possible to set the FIFO(s) up in a multi-buffered mode, in which the CPU writes commands to
one FIFO while the GP reads commands from a different FIFO. See "13 Graphics FIFO" on page 135 for
more information on the graphics FIFO.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

10 Graphics Library (GX)
3.3 Graphics Processor (GP)
The subsequent chapters in this book roughly follow the order of the logical processing blocks of the GP:

Figure 1 - Schematic of the GP

Command
Processing

FIFO
4KB

Vertex Cache
8KB, 8 way

Call FIFO
4KB

Vertex Arrays

Transform

Matrix Memory

Texture Coordinate
Generation

Lighting

Display Lists

GX FIFO

Main Memory
position'

position, normal,
tex coords

color color channels

tex coords'

position
 normal

position'
 normal'

Clipping
Culling
Setup

Rasterize Z Compare

Z
CompareBump Texture

Indirect
 Texture

Fog Blend

Frame Buffer
2.1MB

Texture
Mem/Cache

1.0MB
Textures

Texture
Environment

External Frame
Buffer

or
Texture

Copy
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

11
4 Vertex and primitive data
The GX API supports indexed and direct vertex data with flexible sizes and types. Here is a list of the terms
that we will use in the following discussion:

• Attribute: A component of a vertex; i.e., position, normal, color, texture coordinate, or matrix index.
Each attribute consists of one or more members from an elementary type; for example, a position may
consist of three floats (x, y, z).

• Vertex: A group of attributes attached to a point in space; therefore, every vertex must have, at mini-
mum, a position attribute.

• Primitive: A geometric object described by a group of vertices with the same format.

• Vertex Descriptor: Describes which attributes are present in a particular vertex format and how they
are transmitted from the CPU to the GP (i.e., either direct or indexed).

• Vertex Attribute Format: Describes the format (type, size, format, fixed point scale, etc.) of each
attribute in a particular vertex format.

• Vertex Format: A Vertex Attribute Format together with the Vertex Descriptor.

• Direct: When an attribute is GX_DIRECT, the data representing that attribute is sent to the GP via the
CPU/Graphics FIFO.

• Indexed: When an attribute is GX_INDEX*, an index to the attribute data is sent to the GP via the
Graphics FIFO. The GP then fetches the actual attribute data automatically by using the index and an
array pointer.

To draw a primitive, you should follow these steps:
1. Describe which attributes are present in the vertex format, and describe whether the attributes are

indexed or referenced directly.

2. For indexed data, set the array pointers and strides.

3. Describe the number of elements in each attribute and their types.

4. Describe the primitive type.

5. Draw the primitive by sending the GP a stream of vertices that match the vertex description and
attribute format.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

12 Graphics Library (GX)
Figure 2 - Vertex and attribute description

4.1 Describing the vertex data
Code 2 - Vertex descriptor

 GXClearVtxDesc();
 GXSetVtxDesc(GX_VA_POS, GX_INDEX8);
 GXSetVtxDesc(GX_VA_NRM, GX_INDEX8);
 GXSetVtxDesc(GX_VA_CLR0, GX_DIRECT);
 GXSetVtxDesc(GX_VA_TEX0, GX_INDEX16);

The GXSetVtxDesc function is used to indicate whether an attribute is present in the vertex data, and
whether it is indexed or direct. There is only one active vertex descriptor, known as the current vertex
descriptor. The GXClearVtxDesc command is used to set the value GX_NONE for all the attributes in the
current vertex descriptor. GX_NONE indicates that no data for this attribute will be present in the vertex.
Once cleared, you only need to describe attributes that you intend to provide. The possible attributes are:

• Position, GX_VA_POS (this attribute is required for every vertex descriptor).

• Normal, GX_VA_NRM, or normal/binormal/tangent, GX_VA_NBT.

• Color_0, GX_VA_CLR0.

• Color_1, GX_VA_CLR1.

• Up to 8 texture coordinates, GX_VA_TEX0-7.

• A position/normal matrix index, GX_VA_PNMTXIDX.

• A texture matrix index, GX_VA_TEX0MTXIDX - GX_VA_TEX7MTXIDX.

These last two attributes are 8-bit indices which can reference a transformation matrix in the on-chip matrix
memory. This supports simple skinning of a character (for more on skinning, see “Advanced Rendering” in
this guide). These indices are different from the other attributes in that they may be sent only as direct
data.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Describing the vertex data 13
The GP assumes that you will send any specified attribute data in the ascending order shown in the table
below:

Note: Texture coordinates must be enabled sequentially, starting at GX_VA_TEX0.

Table 1 - Vertex attribute order requirements

Order Attribute

0 GX_VA_PNMTXIDX

1 GX_VA_TEX0MTXIDX

2 GX_VA_TEX1MTXIDX

3 GX_VA_TEX2MTXIDX

4 GX_VA_TEX3MTXIDX

5 GX_VA_TEX4MTXIDX

6 GX_VA_TEX5MTXIDX

7 GX_VA_TEX6MTXIDX

8 GX_VA_TEX7MTXIDX

9 GX_VA_POS

10 GX_VA_NRM or GX_VA_NBT

11 GX_VA_CLR0

12 GX_VA_CLR1

13 GX_VA_TEX0

14 GX_VA_TEX1

15 GX_VA_TEX2

16 GX_VA_TEX3

17 GX_VA_TEX4

18 GX_VA_TEX5

19 GX_VA_TEX6

20 GX_VA_TEX7
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

14 Graphics Library (GX)
4.2 Describing arrays
The attributes of a vertex may be indexed or direct (with the exception of GX_VA_PNMTXIDX, and
GX_VA_TEX0MTXIDX-GX_VA_TEX7MTXIDX, which are always direct). For an indexed attribute
(GX_INDEX8 or GX_INDEX16), you need only to send an index to the attribute data. The GP will use the
following equation to compute the address of the data:

Equation 1 - Attribute address

The GX_INDEX8 index type allows a maximum array size of 255 elements (0-254). The index 255 is
reserved, and indicates that this vertex should be skipped in the command stream. See "15 Multi-resolu-
tion geometry" on page 73 in the Advanced Rendering section for applications of this feature.

The GX_INDEX16 index type allows a maximum array size of 65,535 elements (0-65,534). The index 0xffff
(65,535) is used to indicate that this vertex should be skipped.

The attribute base pointer (byte-aligned) and stride (in bytes) are set using the GXSetArray function
(described further in "4.5.1 Indexed vertex data" on page 25). The hardware will read the data described by
the vertex attribute format (see "4.3 Describing attribute data formats" on page 15) from the array. This
avoids the need to read the data into the CPU only to copy it back into the graphics FIFO. However, index-
ing vertex data has cache coherency issues; see Appendix E.

The Graphics Processor has its own vertex data cache in order to make the fetching of indexed data more
efficient. The vertex cache is an 8K, 8-way set-associative cache. Notice that each attribute can be stored
as a separate array. There is no need to pack a vertex structure in memory, because the current vertex
descriptor and vertex attribute format allow the assembly of vertex data from the various arrays at run time.
You can invalidate the vertex cache using GXInvalidateVtxCache. This will force the cache to reload
vertex data.

A directly referenced attribute (GX_DIRECT) will have its data copied directly into the Graphics FIFO. Direct
data can be used when the data is already available in the CPU cache, or when you are generating data
algorithmically on the fly.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Describing attribute data formats 15
4.3 Describing attribute data formats
The Vertex Attribute Format Table (VAT) allows you to specify the format of each attribute for up to eight
different vertex formats. The VAT is organized as shown:

Figure 3 - Vertex Attribute Format Table (VAT)

You can store eight predefined vertex formats in the table. For each attribute in a vertex, you can specify
the following:

• The number of elements for the attribute.

• The format and size information.

• The number of fractional bits for fixed-point formats using the scale parameter. (The scale parameter is
not relevant to color or floating-point data.)

G
X

_V
TX

FM
T7

G
X

_V
TX

FM
T6

G
X

_V
TX

FM
T5

G
X

_V
TX

FM
T4

G
X

_V
TX

FM
T3

G
X

_V
TX

FM
T2

G
X

_V
TX

FM
T1

G
X

_V
TX

FM
T0

G X _ V A _ P O S

G X _ V A _ N R
M

G X _ V A _ C L R 0

G X _ V A _ C L R 1

G X _ V A _ T E X 0

G X _ V A _ T E X 1

G X _ V A _ T E X 2

G X _ V A _ T E X 3

G X _ V A _ T E X 4

G X _ V A _ T E X 5

G X _ V A _ T E X 6

G X _ V A _ T E X 7

n e le m e n ts
fo rm a t/s iz e

fo rm a t/s iz e

n e le m e n ts
fo rm a t/s iz e

s c a le

n e le m e n ts
fo rm a t/s iz e

s c a le
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

16 Graphics Library (GX)
Code 3 - GXSetVtxAttrFmt

 // format index attribute n elements format n frac bits
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_S8, 0);
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0);

The code above defines vertex attribute format zero. GX_VTXFMT0 indicates that position is a 3-element
coordinate (x, y, z) where each element is an 8-bit 2’s complement signed number. The scale value indi-
cates the number of fractional bits for a fixed-point number, so zero indicates that the data has no fractional
bits. The GX_VA_CLR0 attribute has four elements (r, g, b, a) where each element is 8 bits.

Notes:

• The matrix index format is not specified in the table because it is always an unsigned 8-bit value.

• The scale value is implied for normals (scale = 6 or scale = 14) and not needed for colors. Also,
normals are assumed to have three elements (Nx, Ny, Nz) for GX_VA_NRM, and nine elements
(Nx, Ny, Nz, Bx, By, Bz, Tx, Ty, Tz) for GX_VA_NBT. Normals are always signed values.

• On HW1, the scale value is fixed at zero for 8-bit formats. HW2 does not have this limitation.

• The normal format (GX_VA_NRM) is also used for binormals/tangents (GX_VA_NBT) when they are
enabled in the current vertex descriptor.

The VAT in the Graphics Processor has room for eight vertex formats. The idea is to describe most of your
attribute quantization formats early in the application, loading this table as required. Then you provide an
index into this table (which specifies the vertex attribute data format) when you start drawing a group of
primitives using GXBegin. If you require more than eight vertex formats, you must manage the VAT table
in your application, reloading new vertex formats as needed.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Drawing graphics primitives 17
4.4 Drawing graphics primitives

4.4.1 Primitive types
 The following figure illustrates the types of primitives supported:

Figure 4 - Graphics primitives

GX_POINTS draws a point at each of the n vertices. Points are described further in "4.4.2 Points and lines"
on page 18.

GX_LINES draws a series of unconnected line segments. Segments are drawn between v0 and v1, v2 and
v3, etc. The number of vertices drawn should be a multiple of 2. Lines are described further in "4.4.2 Points
and lines" on page 18.

GX_LINESTRIP draws a series of connected lines, from v0 to v1, then from v1 to v2, and so on. If n verti-
ces are drawn, n-1 lines are drawn.

GX_TRIANGLES draws a series of triangles (three-sided polygons) using vertices v0, v1, v2, then v3, v4,
v5, and so on. The number of vertices drawn should be a multiple of 3, and the minimum number is 3.

GX_TRIANGLSTRIP draws a series of triangles (three-sided polygons) using vertices v0, v1, v2, then v1,
v3, v2 (note the order), then v2, v3, v4, and so on. The number of vertices must be at least 3.

GX_TRIANGLEFAN draws a series of triangles (three-sided polygons) using vertices v0, v1, v2, then v0, v2,
v3, and so on. The number of vertices must be at least 3.

GX_QUADS draws a series of non-planar quadrilaterals (4-sided polygons) beginning with v0, v1, v2, v3,
then v4, v5, v6, v7, and so on. The quad is actually drawn using two triangles, so the four vertices are not
required to be coplanar.

Note: The diagonal common edge between the two triangles of a quad is oriented as shown in "Figure 4
- Graphics primitives" on page 17. The minimum number of vertices is 4.

v0

v1
v2 v3

v4

GX_POINTS

v0

v1

v
2 v3

v4

v5

GX_LINES

v0

v1

v2 v3

v4

v5

GX_TRIANGLES

v0

v1 v2

v3
GX_QUADS

v0

v1

v2

v3
GX_LINESTRIP

v1

v0

v3

v2

v4

GX_TRIANGLESTRIP

v0v1

v2

v3

v4

GX_TRIANGLEFAN
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

18 Graphics Library (GX)
4.4.2 Points and lines
Points are described by a single vertex, either 2D or 3D, and may be textured or not. You define a point’s
size using:

Code 4 - GXSetPointSize

GXSetPointSize(u8 size, GXTexOffset tex_offset);

Points are drawn as a square in screen space, centered about the location of the vertex. The size of a
point may be specified in 1/6 pixel units and the maximum size is 42.5 pixels. If the point is textured, a tex-
ture coordinate should be generated or supplied per point. This texture coordinate is attached to the top-
left corner of the point. The other texture coordinates for the other corners of the point are generated using
tex_offset.

Note: tex_offset is specified in normalized texture coordinates.

Figure 5 - Point definition

Lines are described by two vertices, either 2D or 3D, and may be textured or not. You define a line’s width
using:

Code 5 - GXSetLineSize

GXSetLineSize(u8 width, GXTexOffset tex_offsets);

Lines are centered about the location of the vertices. The small edges of a line will be drawn horizontally or
vertically, depending upon the slope of the line (see "Figure 6 - Line definition" on page 19).

Note: Line area is not preserved under rotation.

(s,t)
si

ze
/2

size/2

te
x_

of
fs

et

tex_offset

(x,y,z)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Drawing graphics primitives 19
The width of a line is specified in units of 1/6 pixel, and the maximum width is 42.5 pixels. If you are looking
down the line from the start point to the end point, the starting texture coordinate is attached to the near
left-hand corner of the line, while the ending texture coordinate is attached to the far left-hand corner. The
texture coordinates for the right-hand corners are produced by adding the tex_offset value to the corre-
sponding left-hand corner texture coordinates. The tex_offset is only added to the s component. See the
figure below for details.

Figure 6 - Line definition

Note: Wide line strips created using GX_LINESTRIP may have overlapped joints that may show gaps
and cracks.

4.4.3 Rasterization rules
As shown in "Figure 4 - Graphics primitives" on page 17, polygons whose vertices appear in clockwise
order are defined to be frontfacing.

width/2

tex_offset

(s0, t0)

(s1, t1)

(x0, y0, z0)

(x1, y1, z1)

GX_LINESTRIP

Lines closer to vertical have
edges aligned to X axis

Lines closer to horizontal have
edges aligned to Y axis

(s0, t0)

(s1, t1) (s0, t0)

(s1, t1)

(s0, t0)

(s0, t0) (s1, t1)

(s1, t1)

(s0+Δ, t0)

(s1+Δ, t1)

(s0+Δ, t0)

(s1+Δ, t1) (s0+Δ, t0)

(s1+Δ, t1)

(s0+Δ, t0)

(s0+Δ, t0)(s1+Δ, t1)

(s1+Δ, t1)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

20 Graphics Library (GX)
Polygon edges that fall exactly across a sample center will include the sample if the sample lies on a left
edge of a polygon; samples that fall exactly on right edges will not be included. When an edge is horizon-
tal, samples that fall exactly on upper edges are included, while samples that fall exactly on lower edges
are not. A sample that occurs at the intersection of two edges will be included only if both edges should
include the sample. These rules are illustrated in the following diagram.

Figure 7 - Polygon rasterization rules

Points are converted into a quad (two triangles) by extending them by half the point size horizontally and
vertically about the center. Once this is completed, the rules for polygon edges are applied to determine
which samples the point includes. Lines are converted into quads in a similar way, and again, the rules for
polygon edges are applied to determine which samples the line will include.

4.4.4 Using vertex functions
The following functions can specify vertex data and indices to vertex data:

Code 6 - Vertex functions

GXPosition[n][t]
 n: {1, 2, 3}, t: {s8, u8, s16, u16, f32, x8, x16}
 GXNormal[n][t]
 n: {1, 3}, t: {s8, s16, f32, x8, x16}

GXColor[n][t]
 n: {1, 3, 4}, t: {u8, u16, u32, x8, x16}

GXTexCoord[n][t]
 n: {1, 2}, t: {s8, u8, s16, u16, f32, x8, x16}

GXMatrixIndex1u8

Samples are indicated by
circles.

Each triangle includes only
the similarly-shaded

samples that it overlaps.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Drawing graphics primitives 21
You draw primitives by calling vertex functions (GXPosition, GXColor, etc.) between GXBegin/GXEnd
pairs. You must call a vertex function for each attribute you enable using GXSetVtxDesc(), and for each
vertex in the order specified in "Table 1 - Vertex attribute order requirements" on page 13. Each vertex
function has a suffix of the form GX[data][n][t], where data describes an attribute (e.g., position, color,
etc.), and n describes the number and t the type of elements passed to the vertex function. See the GX
pages in the online Dolphin Reference Manual for details on each particular vertex function.

Code 7 - Drawing primitives using vertex functions

 GXBegin(GX_TRIANGLES, GX_VTXFMT0, 3);

 GXPosition1x8(0); // index to position
 GXColor1x16(0); // index to color

 GXPosition1x8(1);
 GXColor1x16(1);

 GXPosition1x8(2);
 GXColor1x16(2);

 GXEnd();

GXBegin specifies the type of primitive, an index into the VAT, and the number of vertices between the
GXBegin/GXEnd pair. This information, along with the latest call to GXSetVtxDesc(), fully describes the
primitive, vertex, and attribute format. GXEnd() is a null macro in the non-debug version of the library. In
the debug version, it makes sure that GXBegin and GXEnd are paired properly. You may call vertex func-
tions between GXBegin and GXEnd only.

The data type for each attribute should correspond to the vertex attribute format selected. In the example
below, the data is indexed, so you call vertex functions that describe the format of the index (the ‘x8’ or
‘x16’ type is used to indicate indices):

Code 8 - Using vertex functions

GXClearVtxDesc ();
GXSetVtxDesc(GX_VA_CLR0, GX_INDEX8);
GXSetVtxDesc(GX_VA_POS, GX_INDEX16);

GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_U8, 0);
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0);

// …

GXBegin(GX_VTXFMT0, GX_TRIANGLES, 3);

 GXPosition1x8(0); // index to position
 GXColor1x16(0x3e4); // index to color

 GXPosition1x8(1);
 GXColor1x16(0x123e);

 GXPosition1x8(2);
 GXColor1x16(17);

GXEnd();

The function GXPosition1x8 indicates that this function takes one unsigned char (8-bit) index as a
parameter. The function GXColor1x16 indicates that this function takes one unsigned short (16-bit) index
as a parameter.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

22 Graphics Library (GX)
4.5 Vertex data organization
Indexed attribute data supports Nintendo GameCube goal of flexible data organization. The programmer
can organize data used by animation, collision, and graphics with a minimum of reformatting.

When using indexed attribute data, the attribute values themselves are stored in main memory in an array.
The programmer describes graphics primitives using indices to reference into one or more of these arrays.
The graphics hardware computes the physical addresses from the indices and fetches the data.

A vertex cache is used to cache parts of the arrays as they are accessed, taking advantage of the natural
locality in geometric data. The data is stored in the vertex cache in quantized format, which improves effec-
tive memory bandwidth.

Figure 8 - Flow of indexed vertex data

The following example of a simple textured box shows how indexed data can be more compressed than
direct data.

Note: This example only computes memory size. Indexing can also be beneficial in terms of bandwidth,
because data already in the vertex cache will not need to be read from DRAM.

Graphics Processor

Command
FIFO

Graphics Command
FIFO Attr Data

Array

DRAM

Vertex Cache

CPU

CPU Cache
Write-
Gather
Buffer

1. Generate
index data. 3. Indices read

from GX Cmd
FIFO and

converted to
addresses.

2. Indices
copied into
GX Cmd
FIFO.

4. Data read
from attribute
array into vertex
cache on cache
miss.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Vertex data organization 23
Code 9 - Indexed vs. direct compression example

//
// Indexed version of textured cube
//
// position data
f32 MyPos[] =
{
 100.0, 100.0, 100.0,
 100.0, 100.0, -100.0,
 100.0, -100.0, 100.0,
 100.0, -100.0, -100.0,
 -100.0, 100.0, 100.0,
 -100.0, 100.0, -100.0,
 -100.0, -100.0, 100.0,
 -100.0, -100.0, -100.0
};
// texture data
u16 MyTex[] =
{
 0x0000, 0x0000,
 0x0000, 0x0f00,
 0x0f00, 0x0000,
 0x0f00, 0x0f00
};
//
// draw 6 sides of cube, 2 x 8-bit index per vert
// 6 sides x 4 verts x 1B/indx x 2 indx/vert = 48B
// 8 pos x 3 f32 x 4B/f32 = 96B
// 4 texcoord x 2 u16/texcoord x 2B/u16 = 16B
// ----------------------------------
// total = 48B + 96B + 16B = 160B

//
// Direct version of textured cube
//
// draw 6 sides of cube, 4 vertex each
// 1 pos x 3 f32/pos x 4B/f32 + 1 texcoord x 2 u16/texcoord x 2B/u16 = 16B/vtx
// ----------------------------------
// total = 24 vtx x 16B/vtx = 384B

The indexed attribute arrays can be compressed, removing duplicate attribute data. Also, you can order
the data for animation or collision processing so that it will be loaded efficiently into the CPU cache. Keep
in mind that the graphics chip is not cache-coherent with the CPU. In other words, before the GP accesses
the data, you must explicitly flush the CPU cache of any attribute array data it has accessed previously
(see OS function DCStoreRange). Also, you must invalidate the vertex cache using GXInvalidateVtx-
Cache if you relocate or modify an array of vertex data that is read by, or may be cached by, the vertex
cache.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

24 Graphics Library (GX)
Nintendo GameCube also supports direct data, which is copied directly into the graphics FIFO (see "13
Graphics FIFO" on page 135). The hardware gets the data from the FIFO and sends it down the pipeline; it
does not go through the vertex cache.

Figure 9 - Flow of direct vertex data

In addition, it is possible to mix indexed and direct attribute data within a vertex.

Finally, Nintendo GameCube can generate new vertex data based on the existing vertex data in hardware.
For example, you can generate texture coordinates from position. This can be considered another form of
data compression. See "7 Texture coordinate generation" on page 53 for more information.

Graphics Processor (GP)

Command
FIFO

CPU

CPU Cache Vertex Cache

Graphics Command FIFO
Attr Data

Array

DRAM

Write-
Gather
Buffer

1. Data read from
DRAM.

2. Data copied
into GX Cmd
FIFO.

3. Data read
from GX
Cmd FIFO
and
processed.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Vertex data organization 25
4.5.1 Indexed vertex data
In addition to specifying the vertex attribute descriptor (using GXSetVtxDesc) to indicate that an attribute
is indexed, you must also specify a pointer to the array of attribute data, and the stride in bytes between
successive elements in the array.

There is a unique base pointer and stride for every attribute type. The pointer and stride are set using the
GXSetArray function. You can also use GXSetArray for setting pointers and strides for indexed light
arrays and matrix arrays.

Figure 10 - Indexed vertex data

Code 10 - GXSetArray

s8 Verts8[18] = { -100, 100, 0,
 100, 100, 0,
-100, -100, 0 };

u32 Colors[3] = {
0xFF000000,
0x00FF0000,
0x0000FF00 };

GXSetArray(GX_VA_POS, (u32)Verts8, 3);
GXSetArray(GX_VA_CLR0, (u32)Colors, sizeof(u32));
// …

GXTexCoord1x8(5)

GXColor1x8(1)

Position Array

Tex Coord Array

Color Array

DRAM GXSetVtxDesc(GX_VA_POS, GX_INDEX8)
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, ...)
GXSetArray(GX_VA_POS, ...)

GXSetVtxDesc(GX_VA_CLR0, GX_INDEX8)
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, ...)
GXSetArray(GX_VA_CLR0, ...)

GXBegin(GX_TRIANGLES, ...)

GXEnd()

Position Array
- Base Pointer
- Stride

Tex Coord Array
- Base Pointer
- Stride

Color Array
- Base Pointer
- Stride

GXPosition1x8(12)

GXSetVtxDesc(GX_VA_TEX0, GX_INDEX8)
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_TEX0,...)
GXSetArray(GX_VA_TEX0, ...)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

26 Graphics Library (GX)
The stride parameter also allows you to step through structures:

Code 11 - Arrays of vertex structures

typedef struct {
 u8 x,y,z;
 u16 s,t;
 u32 rgba;
 u32 private_data;
} MyVert;

MyVert myverts[100];

// …
GXSetArray(GX_VA_POS, &myverts[0].x, sizeof(MyVert));
GXSetArray(GX_VA_CLR0, &myverts[0].rgba, sizeof(MyVert));
GXSetArray(GX_VA_TEX0, &myverts[0].s, sizeof(MyVert));

GXSetVtxDesc(GX_VA_POS, GX_INDEX8);
GXSetVtxDesc(GX_VA_CLR0, GX_INDEX8);
GXSetVtxDesc(GX_VA_TEX0, GX_INDEX8);

GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_U8, 2);
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0);
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_TEX0, GX_TEX_ST, GX_S16, 4);

4.5.2 Direct vertex data
When the vertex descriptor for an attribute is set to GX_DIRECT, the vertex function will copy the vertex
data into the graphics FIFO (see "13 Graphics FIFO" on page 135).

Note: This is different from indexed primitives, in which the vertex function copies an index to the data
into the graphics FIFO, and the data is read directly from main memory by the Graphics Processor.

Direct data is coherent with the CPU cache, since it is copied through it.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Vertex data organization 27
Direct data is also useful in cases where the data you want to send is already in the cache. For example,
matrices are likely to be in cache because they are needed for animation and collision. Therefore, it may
be more efficient to write them to the graphics FIFO directly, rather than index them from an array. On the
other hand, direct data uses more bandwidth because each element must be read into the CPU cache,
written to the graphics FIFO, and then read out of the FIFO again into the Graphics Processor. With
indexed data, you write the index into the FIFO and only read the data if there is a miss in the vertex cache.

Code 12 - Direct vertex data

GXClearVtxDesc();
GXSetVtxDesc(GX_VA_POS, GX_DIRECT);
GXSetVtxDesc(GX_VA_CLR0, GX_DIRECT);

GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, GX_CLR_RGB, GX_RGB8, 0);
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_F32, 0);

GXBegin(GX_TRIANGLES, GX_VTXFMT0, 3);
 // vert 0
 GXPosition3f32(100.0, 100.0, 0.0);
 GXColor3u8(0xff, 0x00, 0x00);
 // vert 1
 GXPosition3f32(0.0, 0.0, 0.0);
 GXColor3u8(0x00, 0xff, 0x00);
 // vert 2
 GXPosition3f32(100.0, 0.0, 0.0);
 GXColor3u8(0x00, 0x00, 0xff);
GXEnd();

4.5.3 Mixture of direct and indexed data
Indexed data may be mixed with direct data in a vertex format. Sometimes, the data size may be small and
since each vertex is unique, it is not worth indexing. This data can be sent directly while using indexing for
other attributes:

Code 13 - Mixture of direct and indexed data

GXClearVtxDesc();
GXSetVtxDesc(GX_VA_POS, GX_INDEX8);
GXSetVtxDesc(GX_VA_CLR0, GX_DIRECT);

GXSetArray(GX_VA_POS, &MyPos[0], sizeof(f32)*3);

GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, GX_CLR_RGB, GX_R5G6B5, 0);
GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_F32, 0);

GXBegin(GX_TRIANGLES, GX_VTXFMT0, 3);
 // vert 0
 GXPosition1x8(1); // this is an index, use the ‘x’ type
 GXColor1u16(0xf551); // this is color data, not an index
 // vert 1
 GXPosition1x8(0);
 GXColor1u16 (0x3243);
 // vert 2
 GXPosition1x8(2);
 GXColor1u16 (0x1897);
GXEnd();
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

28 Graphics Library (GX)
4.6 Display lists
A display list is a pre-compiled list of primitive-rendering or state-setting commands. Once the list has been
created, the GP can access it directly and process the commands as many times as needed. This provides
tremendous savings in memory bandwidth, compared to having the CPU constantly create and send
immediate-mode primitives. To get optimum performance from the system, therefore, requires the use of
display lists.

Figure 11 - Display list flow

4.6.1 Creating display lists
Display lists may be created in various ways:

• By using GXBeginDisplayList, GX primitive commands, and GXEndDisplayList.

• By loading a GPL file created from the Character Pipeline (C3) library. The C3 library is designed to
make creating and animating characters easier. Logically, C3 is a layer above the GX library (i.e., it
only calls GX functions; it does not replace GX functionality).

• By creating an array containing display list command tokens and data.

4.6.1.1 Using GXBeginDisplayList and GXEndDisplayList
With this method, you first allocate space in memory in which to store the display list. The starting address
of the display list must be a multiple of 32 bytes. The OS function OSAlloc is useful for this purpose, since
it provides 32-byte-aligned memory pools. Before writing display list commands to this memory area, you
must make sure that it is forced out of the CPU data cache. This is because the CPU’s write-gather buffer
(used to write graphics commands to memory) is not cache coherent. The OS command
DCInvalidateRange may be called to ensure the memory range is not in the cache.

Graphics Processor

Command
FIFO

CPU

CPU Cache

Graphics Command FIFO

Attr Data
Array

DRAM

Write-
Gather
Buffer

Call
FIFO Vertex Cache

Display List

4. Start reading
commands from

Display List into Call
FIFO. GP executes

commands from Call
FIFO.

3. CallDisplayList
command read

by GP.

1. Issue
CallDisplayList

command.

2. CallDisplayList
command copied
into GX Cmd FIFO.

5. Display List
has indexed
primitive
commands.
GP fetches
indexed data.

6. When Display List
command finishes,
switch execution to
Command FIFO.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Display lists 29
Once the memory area has been set up, you can then call:

Code 14 - GXBeginDisplayList

void GXBeginDisplayList(
 void *list,
 u32 size);

The list argument is the starting address for where the display list will be stored. The size argument indi-
cates the number of bytes available in the allocated space for writing display list commands; it allows the
system to check for overflow. Also, the size must be a multiple of 32 bytes.

Note: Due to padding issues, the size of the memory area may need to be as many as 63 bytes larger
than the actual number of bytes needed for commands and data. This is explained below.

Once GXBeginDisplayList has been called, all further GX commands are written to the display list
instead of to the normal command FIFO. The GXEndDisplayList command signals the end of the dis-
play list, and it returns the command stream to the FIFO to which it had been directed previously. The
GXEndDisplayList command also returns the actual size of the created display list in bytes. The size
returned will always be a multiple of 32 bytes (i.e., the system will pad the end of the display list will null
commands as necessary).

Note: The display list is padded by flushing the write-gather buffer. Flushing is accomplished (internally
in GX) by writing 32 null commands to the write-gather buffer. As a result, up to 32 bytes may be
written at the end of the display list. In addition, any of the left-over bytes from a flush (up to 31)
may be written to the start of a display list. (We conserve CPU cycles by not resetting the write-
gather buffer to eliminate the left-over bytes.) This is why the size of the allocated space should be
at least 63 bytes larger than requirements otherwise anticipate.

Because the write-gather buffer is used to put GX commands into memory, the CPU data cache does not
need to be flushed after the display list has been written in this manner. However, if the CPU copies a dis-
play list from one memory area to another, then the data cache may have to be flushed, depending upon
how the copy is performed.

Display lists cannot be nested. This means that once a GXBeginDisplayList has been issued, it is ille-
gal to issue another GXBeginDisplayList or GXCallDisplayList until a GXEndDisplayList com-
mand comes along.

4.6.1.2 Loading GPL files
You can use the Character Pipeline’s C3 tools to create display lists. These display lists are an integral part
of the GPL files output by the tools. You can then use the geoPalette runtime calls to load a GPL file, fol-
lowed by geoPalette’s Display Object (DO) runtime calls to render the display lists. For more information,
refer to “Game Engine Programming” in the Nintendo GameCube Character Pipeline & CG Tools Guide.
Here are some of the relevant calls:

Code 15 - geoPalette/display object calls

Void GetGeoPalette (GeoPalettePtr *pal, char *name)
void GetDisplayObject (DODisplayObjPtr *dispObj, GeoPalettePtr pal, u16 id, char *name)
void DOShow (DODisplayObjPtr dispObj)
void DOSetWorldMatrix (DODisplayObjPtr dispObj, Mtx m
void DORender (DODisplayObjPtr dispObj, Mtx camera, u8 numLights, ...)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

30 Graphics Library (GX)
4.6.1.3 Creating arrays containing display list commands
Appendix B describes some of the command tokens that go into a display list. You can put such tokens
and the associated data directly into an array. When creating an array whose elements are defined at com-
pile time, use the ATTRIBUTE_ALIGN(32) pragma (specific to the Metrowerks CodeWarrior compiler) to
guarantee proper alignment. You must also be sure to pad the length of the array to a multiple of 32 bytes
using null commands, as in the following example:

Code 16 - Sample array containing display list

u8 OneTriDL[] ATTRIBUTE_ALIGN(32) =
{
 (GX_DRAW_QUADS | GX_VTXFMT0), // command, primitive type | vat idx
 0, 36, // number of verts, 16b
 8, 0, 7, 0, 2, 0, 3, 0, // quad 0
 1, 1, 2, 1, 7, 1, 6, 1, // quad 1
 1, 2, 0, 2, 9, 2, 10, 2, // quad 2
 4, 1, 1, 1, 10, 1, 11, 1, // quad 3
 1, 2, 12, 2, 13, 2, 2, 2, // quad 4
 2, 0, 13, 0, 14, 0, 5, 0, // quad 5
 18, 2, 15, 2, 16, 2, 17, 2, // quad 6
 20, 1, 17, 1, 16, 1, 19, 1, // quad 7
 20, 0, 21, 0, 18, 0, 17, 0, // quad 8
 GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, // pad
 GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, // pad
 GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP, GX_NOP // pad to 32B
};

Arrays created in this manner are loaded into memory via the disc system, and thus should be guaranteed
to be resident in memory and not in any CPU cache, so no special cache flushing is required.

In addition, display list arrays can be created dynamically. You can use the OSAlloc function to acquire a
pool of memory that is guaranteed to be 32-byte aligned, then stuff the array with the desired command
tokens and data. (Remember, of course, to pad the end of the command stream to a 32-byte boundary
using null commands.) Finally, the array must be flushed from the CPU’s data cache before the Graphics
Processor can call it. You can use the function DCStoreRange (or DCFlushRange) to do this.

4.6.2 Drawing primitives using display lists
Once a display list has been created, you can call it using:

Code 17 - GXCallDisplayList

void GXCallDisplayList(
 void *list,
 u32 size);

This call takes the size of the display list to increase the efficiency of display list processing and obviate the
need for an explicit return command.

As shown in "Figure 11 - Display list flow" on page 28, the Graphics Processor has its own logic to handle
GXCallDisplayList commands. CPU involvement is not necessary to change over the FIFO source,
since the GP handles this (and, in fact, has separate internal FIFOs for mainstream graphics commands
vs. display list commands). This allows the GP to handle display lists very efficiently.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GXDraw functions 31
4.6.3 Effect on machine state
A call to GXCallDisplayList does not perform any state pushing and popping. The only effect is to tem-
porarily change the source of graphics commands from the original source to the display list. Therefore,
any state that is changed during a display list call remains changed after the display list has been pro-
cessed.

Display lists that include state-changing commands have further complications. Certain state registers in
the GP include more than one piece of state. However, when writing to such a register, all of the included
state is affected. You cannot write to only certain bits of a register without writing to all the other bits.

The GX API maintains shadow copies of the registers that are updated as the CPU processes GX com-
mands. However, when the GP processes display lists, any state-changing commands in the display list
will update the actual registers and not update the shadow copies of the registers. Consequently, the state-
changing commands that occur in a display list (or after a display list) may unexpectedly affect other pieces
of state as well. Also, calls to inquire about current state (which read the shadow registers) may return
incorrect results.

As a result, one should be very careful about placing state-changing commands within display lists. You
may want to separate state from geometry within a display list, or else limit the state-changing commands
to ones that relate to the contained geometry. Geometry-only display lists can thus be used without worry-
ing about side effects, and the user need only pay special attention when using state-changing display
lists.

There is one further complication. Not all of the GX commands act immediately (“act” means inserting
commands into the current FIFO or command buffer). Instead, some set variables within GX, and the
actual relevant GP commands are not sent out until a GXBegin command is seen. This is known as “lazy
evaluation,” and the purpose is to avoid sending unnecessary commands which could slow the system
down. This “lazy state” is also flushed by GXBeginDisplayList before the display list is started, by
GXEndDisplayList before the display list is finished, and by GXCallDisplayList before the display
list is called. Currently, the lazy state includes the VCD/VAT registers, the texture-coordinate scale regis-
ters, and the GEN_MODE register. The latter contains bits indicating the number of active TEV and indirect
stages, the number of active textures, the number of rasterized colors, back/front culling mode, and anti-
aliasing mode (these features are described in later chapters).

Appendix C includes more information on display-list format, and it details which pieces of state are tied
together within the hardware registers.

4.7 GXDraw functions
A number of basic 3D objects can be drawn using functions provided by GX. The following are provided:

• Cylinder.

• Torus.

• Sphere (iterated).

• Sphere (recursive).

• Cube.

• Dodecahedron.

• Octahedron.

• Icosahedron.

• Normal table.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

32 Graphics Library (GX)
The following features are common:

• All shapes fit tightly within X = +/- 1, Y = +/- 1, Z = +/- 1.

• The shapes are typically symmetric around the Z axis.

• All functions save and restore the VCD and VAT/VTXFMT3.

• Positions and normals are provided for all shapes.

Texture coordinates may be provided for the torus, iterated sphere, and cube. They will be sent if the VCD
had texture coordinates enabled prior to the function being called. Similarly, NBT normals may be provided
for the cube.

These are the functions themselves:

Code 18 - GX Draw functions

void GXDrawCylinder(u8 numEdges);
void GXDrawTorus(f32 rc, u8 numc, u8 numt);
void GXDrawSphere(u8 numMajor, u8 numMinor);
void GXDrawCube(void);
void GXDrawDodeca(void);
void GXDrawOctahedron(void);
void GXDrawIcosahedron(void);
void GXDrawSphere1(u8 depth);
u32 GXGenNormalTable(u8 depth, f32* table);

GXDrawTorus takes arguments specifying the radius of the cross-section (i.e., the “fatness,” with 0 < rc <
1), the number of subdivisions around the cross-section, and the number of subdivisions around the over-
all torus. GXDrawSphere is the iterated sphere, and it takes arguments specifying the number of lateral
subdivisions and the number of longitudinal subdivisions. GXDrawSphere1 is the recursive sphere; it is
generated by recursively subdividing an icosahedron to the specified depth. GXGenNormalTable allows a
normal table to be generated by recursive subdivision of an icosahedron. You specify the recursion depth
and a pointer to memory to store the table. The function returns the total number of normals generated.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

33
5 Viewing
In this chapter, we describe the transformation section of the Graphics Processor.

The GP has an internal matrix memory. The programmer can load several matrices into the memory and
specify one of them as the current matrix using GXSetCurrentMtx. Another way to specify a matrix is to
provide a per-vertex matrix index. Vertices that do not specify a modelview matrix index will use the current
matrix. When a matrix index is specified, the index used becomes the current matrix index; i.e., it over-
writes the index set by GXSetCurrentMtx.

The same matrix memory index which specifies the modelview matrix that transforms the vertex position
also specifies the normal matrix when lighting is enabled.

Note: The picture below is somewhat simplified. Refer to "5.6 How to override the default matrix memory
configuration" on page 39 for more details on the matrix configuration.

Figure 12 - Modelview and projection data path

Modelview
Transform

3x4

Projection
Transform

Vertex Position
(X,Y,Z,1.0)

Projection Matrix

Projected Coordinate
(Xc, Yc, Zc, Wc)

Normal Matrix Memory

GX_PNMTX0

GX_PNMTX1

GX_PNMTX2

GX_PNMTX3

GX_PNMTX9

Normal
Transform

3x3

Vertex Normal
(Nx,Ny,Nz)

(Nxe, Nye, Nze) to Lighting

Position Matrix Memory

GX_PNMTX0

GX_PNMTX1

GX_PNMTX2

GX_PNMTX3

GX_PNMTX9

GXLoadPosMtx*
GXLoadNrmMtx*
GXSetCurrentMtx

GXSetProjection
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

34 Graphics Library (GX)
5.1 Loading a modelview matrix
The functions shown below are used to load a position matrix and to specify which matrix should be used:

Code 19 - GXLoadPosMtxImm

GXLoadPosMtxImm(&v, GX_PNMTX0);
GXSetCurrentMtx(GX_PNMTX0);

Assuming an implicit W of 1.0, the basic vertex position transform from object or model space to homoge-
neous eye space is:

Equation 2 - Vertex position transform

The matrix memory is configured by default to contain:

• 10 position and normal matrix pairs (GX_PNMTX0-9), described by the enumeration GXPosNrmMtx.

• 10 texture matrices (GX_TEXMTX0-9), described by the enumeration GXTexMtx.

• An identity matrix (GX_IDENTITY), also described by the enumeration GXTexMtx.

All matrices use floating point data.

The normal matrices are used for vertex lighting (see "6 Vertex lighting" on page 41). The texture matrices
are used for various texture coordinate operations ("7 Texture coordinate generation" on page 53). In the
example onetri.c, GXInit sets the default matrix to GX_PNMTX0.

The normal transform is similar to the position transform; however, translation is neither required nor use-
ful. Consequently, the matrix does not need to convert a homogeneous normal. The normal is not trans-
formed by the projection and screen space conversions. The function GXLoadNrmMtxImm loads and
converts a 3x4 matrix into a 3x3 matrix in normal matrix memory. This assumes that the normal matrix is
usually the inverse transpose of the modelview matrix, which is usually a 3x4 matrix. The functions
GXLoadNrmMtxImm3x3 and GXLoadNrmMtxIndx3x3 may be used to load a normal matrix directly from
a 3x3 matrix in main memory.

Note: There is no function to do an indexed load of a 3x3 matrix from an array of 3x4 matrices.

The transformed normal is re-normalized before being used in the lighting calculations.

Equation 3 - Vertex normal transform

A matrix can be loaded either by copying it directly into the Graphics FIFO (GXLoadPosMtxImm) or by
indexing a matrix array in DRAM (GXLoadPosMtxIndx). Indexed matrices are loaded directly by the
graphics hardware; i.e., the matrix data is never sent through the Graphics FIFO.

Note: Indexed matrix loads have cache coherency issues; see Appendix E.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Setting a projection matrix 35
When using index matrices, you must first set up a base pointer and stride for the array you wish to access
using the GXSetArray function. The base pointer is the address of the first element in the array (index =
0). The stride is the number of bytes between successive elements of interest in an array. For example, an
array of 3x4 floating point matrices would have a stride of 48B = 3 rows x 4 columns x 4B/float. The stride
also allows the programmer to index arrays of structures that have other data, as well as matrices, in them.
The maximum stride accepted by GXSetArray is 255B. Use the attributes GX_VA_POS_MTX_ARRAY,
GX_VA_NRM_MTX_ARRAY, and GX_VA_TEX_MTX_ARRAY to specify a matrix array.

Note: Matrix memory is not a matrix stack. It is assumed that the application will manage matrix stacks in
main memory and concatenate matrices using the CPU. The loaded matrix should transform the
object to be drawn from local model space to view space. The MTX library supports creating and
manipulating matrix stacks.

It is the application's responsibility to manage the matrix memory; the GX API simply provides a mecha-
nism for loading and using matrices.

A utility library is provided for matrix and vector math functions; see “Matrix-Vector Library (MTX).”

5.2 Setting a projection matrix
The GP performs standard projection transforms for each vertex position. The projection is done sepa-
rately from, and after, the modelview transform in the GP. The GXSetProjection function will load a sin-
gle projection matrix.

Code 20 - GXSetProjection

 GXSetProjection(p, GX_PERSPECTIVE);

The first argument is a pointer to a 4x4 projection matrix (see “Matrix-Vector Library (MTX)” for more infor-
mation on matrix format and construction). The second argument indicates whether the matrix is perspec-
tive or orthographic. The projection transform hardware assumes the following form for the projection
matrix:

Equation 4 - Perspective projection

Equation 5 - Orthographic projection

The Matrix-Vector library contains functions to help set up perspective and orthographic projection matri-
ces conveniently. They include MTXFrustum, MTXPerspective, and MTXOrtho.

The resultant homogeneous coordinates are in clip space. Once the clip space coordinates are obtained,
1.0/Wc is computed for converting to non-homogenous coordinates. Once this is done, the (x, y, z) coordi-
nates will lie within the normalized space of ([-1…+1], [-1…+1], [-1…0]).
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

36 Graphics Library (GX)
5.3 Culling, clipping, and scissoring
Figure 13 - Clipping and culling data path

The coordinates resulting from the projection transform are said to be in clip space [Xc, Yc, Zc, Wc]. The
hardware will conditionally reject triangles that are frontfacing, backfacing, or both front- and backfacing as
set by the GXSetCullMode function. As stated earlier, frontfacing triangles are those whose vertices
appear onscreen in clockwise order.

Guardband clipping to +/-2Wc reduces the amount of clipping in the transform unit. The rasterization pro-
cess uses evaluation to compute only pixels that are within the visible screen, so there is no fill rate penalty
for this type of clipping.

Triangles are clipped when they are both outside the guardband region and inside the viewport. Other tri-
angles will be either totally out of the viewport (trivially rejected), totally inside the viewport (trivially
accepted), or partially inside the viewport (trivially accepted but scissored).
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Viewport and scissoring 37
Points are trivially accepted when they are within +/-2Wc and are trivially rejected when they are outside +/
-2Wc. This prevents wide points from being trivially rejected when the vertex is outside of +/-Wc. In this
case, due to the point’s width, some of it may be visible. Lines are also only trivially rejected when they are
outside +/-2Wc.

Figure 14 - Clip coordinates

After clipping, the vertex (x, y, z) is perspective-divided. The viewport transform converts the coordinates
into screen space.

Note: Actual clipping is a very slow procedure that creates stalls in the transform engine, thus it should
be avoided whenever possible. Clipping can be disabled by the function GXSetClipMode. There
is a guardband at the far clipping plane that makes it acceptable to turn off clipping for most far-
clipped objects. However, disabling clipping for near-clipped objects results in incorrectly drawn
polygons.

GXInit enables backface culling and sets the viewport and scissor box to full screen size.

5.4 Viewport and scissoring
The following equation performs the conversion from clip space to screen space and perspective scaling:

Equation 6 - Clip space to screen space conversion

The resultant screen space coordinate is then sent to the setup unit for rasterization. The 1/Wc value is
also sent to the setup unit for texture space computations.

Wide point
Trivial Reject

Viewport

Guardband

0
-2Wc 2Wc

Wc-Wc

Clip

Trivial Accept

Trivial Reject

Wide point
Trivial Accept

Wide point
Trivial Accept
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

38 Graphics Library (GX)
The viewport is set using the following function:

Code 21 - GXSetViewport

GXSetViewport(
 f32 xOrig,
 f32 yOrig,
 f32 width,
 f32 height,
 f32 nearZ,
 f32 farZ);

The screen space origin (0, 0) is at the top-left corner of the display. The screen space scale and offset are
computed using floating-point values. This is used to advantage in the function GXSetViewportJitter
to jitter the viewport by half a line in field rendering modes.

GXSetScissor sets the scissor box, typically to the same size as the viewport.

Code 22 - GXSetScissor

GXSetScissor(
 u32 left,
 u32 top,
 u32 width,
 u32 height);

5.5 Coordinate systems
The GX API assumes a right-handed coordinate system for model and eye space. The eye in eye space is
assumed to be looking down the negative Z axis. In order to map eye space into the viewport, the coordi-
nates undergo two changes of coordinate systems. The first occurs during projection into clip space
(assuming the MTX library projection routines are used). As a result of this transformation, the Z axis is
flipped, with Znear mapped to -W and Zfar mapped to zero. The second change occurs during the viewport
mapping into screen space. In this mapping, the Y axis is flipped, and the Z values are offset such that
Znear maps to the viewport near Z and Zfar maps to the viewport far Z. The diagram below illustrates the
process:

Figure 15 - Coordinate system transformations

X

Y

Z Eye Space
Right-handed

coordinate
system

Clip Space
Left-handed
coordinate

system

Screen Space
Right-handed

coordinate
system

X

Y

Z
X

Y

Z

Znear

Zfar

Znear

Zfar

Znear

Zfar

Projection
Viewport
Mapping
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

How to override the default matrix memory configuration 39
The function GXProject is provided to transform a single point from object space to screen space. You
pass it the object coordinate, the model-view matrix, the projection matrix, and the viewport. It returns the
transformed point:

Code 23 - GXProject

void GXProject (
 f32 x, // object coordinates
 f32 y,
 f32 z,
 f32 mtx[3][4], // model-view matrix
 f32* pm, // projection matrix, as returned by GXGetProjectionv
 f32* vp, // viewport, as returned by GXGetViewportv
 f32* sx, // returned screen coordinates
 f32* sy,
 f32* sz);

5.6 How to override the default matrix memory configuration
The GX API configures the matrix memory in a way that is generally useful for a wide variety of applica-
tions. In some specific cases, you may want to override this default configuration. Here we describe the
physical layout of matrix memory and the rules an application must follow to allocate the matrix memory
successfully.

The matrix memory consists physically of two separate memories: one for modelview and texture matrices,
the other for normal matrices. (HW2 adds a third memory; see "15 GX updates for HW2" on page 155.)

Figure 16 - Matrix memory

The modelview/texture matrix memory consists of 64 rows, each row consisting of four floats. A matrix is
loaded as a set of contiguous rows in matrix memory. The index used by GXLoadPosMtx* and
GXLoadTexMtx* to specify the matrix in matrix memory (GX_PNMTX0 or GX_TEXMTX5, for example) is
actually the row address where the first row of the matrix is loaded. Modelview matrices loaded using
GXLoadPosMtx* are assumed to have three rows (i.e., 3x4 matrices). Texture matrices can have either
two or three rows, specified in GXSetTexCoordGen. The matrices may be loaded starting at any row
address.

ModelView/Texture Matrix
Memory

Row 0

Row 1

Row 2

Row 3

Row 63

f0 f1 f2 f3

Each row contains 4 floats

Normal Matrix Memory

Row 0

Row 1

Row 2

Row 3

Row 31

f0 f1 f2

Each row contains 3 floats
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

40 Graphics Library (GX)
The normal matrix memory consists of 32 rows, but each row contains only three floats. Since normals are
not required to be homogeneous, only 3x3 matrices are needed. Normal matrices can be loaded from
either a 3x4 matrix (GXLoadNrmMtxImm) or from a 3x3 matrix (GXLoadNrmMtxImm3x3) in main memory.
Like modelview and texture matrices, normal matrices are indexed using the starting row address in nor-
mal matrix memory. However, normal matrices use the same index as modelview matrix, so the two must
be allocated as a pair. Normally, the matrix used to transform the normal is the inverse transpose of the
modelview matrix, so they are naturally pairs.

Since the modelview matrix index can address 64 rows, but the normal matrix index can address only 32
rows, the hardware computes the normal index as:

Equation 7 - Normal matrix index
norm_mtx_indx = pos_mtx_indx % 32

For example, a modelview matrix row address of 33 or 1 will address the same normal matrix (at row
address 1).

Note: If you wish to use modelview matrices beyond the first ten matrices (thirty rows), you need to leave
a gap at row 30 and row 31. The eleventh modelview matrix must start at row 32 in order to line up
with a normal matrix.

The default matrix configuration organizes the modelview/texture matrix memory as follows:

• Ten modelview matrices (3x4).

• Ten texture matrices (3x4).

• One identity matrix (3x4).

Note: Sixty-three rows are used in this configuration.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

41
6 Vertex lighting

6.1 Lighting pipeline
Nintendo GameCube supports lighting in hardware as a per-vertex calculation. This means that a color
(RGB) value can be computed for every lit vertex, and that these colors are then linearly interpolated over
the surface of each lit triangle (known as Gouraud shading).

Nintendo GameCube has full support for diffuse local spotlights. There is also some support for infinite
specular lighting. This chapter focuses mainly on diffuse lighting. Specular lighting is covered in "6.6 Spec-
ular lighting" on page 49.

6.1.1 Diffuse lights, diffuse attenuation and vertex normals
The hardware supports diffuse attenuation. This means that the front of the object can be brighter than the
sides, and the back darkest. Diffuse attenuation is the primary reason vertex normals are supported. For
each vertex, the vertex normal (N) is compared against the vector between the vertex and light position.

This encompasses two important physical effects. First, surfaces on 'the back' of an object receive no light.
This can be seen as a simple self-shadowing technique—one which only works for convex objects. Sec-
ond, surfaces facing the light are lit more or less, depending on the incident angle of the incoming light.

6.1.2 Local lights and range attenuation
The hardware supports local lights. Local lights have a position within the world and, possibly, a direction.
In fact, each light must have a position. Using the position of each vertex and the position of the light, the
hardware can perform per-vertex distance attenuation. This means that you can make the brightness of
the light shining on an object decrease as the object moves away from the light.

6.1.3 Spotlights, directional lights and angle attenuation
The hardware supports directional lights, ranging from non-directional lights, to subtle directional effects, to
highly directional spotlights. These effects are supported by angle attenuation. This means that vertices
directly “in the beam” of the light can be made brighter than vertices outside the beam or behind the light.

Local diffuse lights can be both distance- and angle-attenuated (spotlights). By programming the proper
lighting equation, you can obtain the attenuation value as an output color or alpha. This color or alpha can
then be used in the Texture Environment (TEV) unit to attenuate projected texture lights.

The hardware supports eight physical lights. The programmer can describe the attenuation parameters,
position, direction, and color of each light. The programmer can control up to four physical color channels
that accumulate the result of the lighting equation. By associating lights with channels, the programmer
can choose to sum the effect of multiple lights per vertex, or combine them later in the TEV. The number of
channels available to the TEV is set by GXSetNumChans. In some cases (e.g., when using a color channel
to generate texture coordinates), a light channel is computed but not output. If only one channel is avail-
able to the TEV, it is GX_COLOR0A0. The light channel GX_COLOR1A1 is only available if two channels are
output to the TEV.

Code 24 - GXSetNumChans

 GXSetNumChans(u8 nChans);

Each color channel allows the enabling of attenuation and the selection of the color source. A light mask
associates up to eight lights with the channel.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

42 Graphics Library (GX)
One light is supported at the peak vertex rate of 25 million vertices/second. With two texture coordinates
per vertex and two lights, the peak vertex rate is 18.3 million vertices/second. With two texture coordinates
per vertex and four lights, the peak vertex rate is 12.5 million vertices/second.

Figure 17 - Associating lights with color channels

Color Channels

GX_COLOR0

GX_COLOR1

GX_ALPHA0

GX_ALPHA1

Light 0

Light 1

Light 2

Light 7

Light Attenuation Parameters
Light Position
Light Direction
Light Color

Light Mask Associates
Lights With a Channel

Diffuse Control: GX_DF_NONE, SIGN, CLAMP
Atten Control: GX_AF_NONE, SPOT, SPEC
Material Src: GX_SRC_REG or GX_SRC_VTX
Ambient Src: GX_SRC_REG or GX_SRC_VTX
Material Color (GX_SRC_REG)
Ambient Color (GX_SRC_REG)
Light Mask

GX_COLOR0A0

GX_COLOR1A1

Output Accumulated Colors
to Rasterizer
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Diffuse lighting equations 43
6.2 Diffuse lighting equations
Figure 18 - Lighting vectors

Equation 8 - Light parameters

Equation 9 - Rasterized color

Equation 10 - Color channel

Equation 11 - Material source

Equation 12 - Channel enable

Equation 13 - Sum of lights in a channel

Equation 14 - Ambient source

Equation 15 - Diffuse attenuation
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

44 Graphics Library (GX)
Equation 16 - Diffuse angle and distance attenuation

6.3 Matrix memory
To use per-vertex lighting, you must provide a normal with each vertex. In order for the hardware to trans-
form the normal, you must provide a normal matrix. The normal matrix must be the inverse transpose of
the modelview matrix. The position modelview and normal modelview matrix are indexed by a single index.
In other words, they are considered to be a pair. The transformed normal is re-normalized before the light-
ing computations.

For directional lights, you must provide a light normal for each active light. It is the application’s responsibil-
ity to transform the light normal and light position into view space when the viewpoint changes. The world-
to-view matrix should be used to transform the light’s position. The light’s direction should be transformed
by the inverse transpose of the world-to-view matrix. The light’s direction is not normalized by the hard-
ware; therefore, the application must ensure it is properly normalized.

6.4 Light parameters
You may define the position, direction, attenuation factors, and color for each physical light. There are eight
sets of physical light parameters. Light state is stored in a GXLightObj structure. The application is
responsible for allocating the memory for a GXLightObj. The GXInitLight* functions can be used to
initialize or modify the GXLightObj structure. The GXLoadLightObjImm or GXLoadLightObjIndx
function is used to load the GXLightObj parameters into a physical light. GXLoadLightObjIndx has
cache-coherence issues; see "E.3 Data coherency" on page 214 for more details.

6.4.1 Angle attenuation
The function GXInitLightAttn is used to initialize parameters used to compute angle and distance
attenuation, as shown in "Equation 9 - Rasterized color" on page 43.

Code 25 - GXInitLightAttn

void GXInitLightAttn(
 GXLightObj *lt_obj,
 f32 a0,
 f32 a1,
 f32 a2,
 f32 k0,
 f32 k1,
 f32 k2);

The angle attenuation (a0,a1,a2) is a quadratic function of the cosine of the angle between the light
direction and the light to vertex direction. By controlling the quadratic function’s coefficients, you control the
effective angle of the light.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Light parameters 45
A more convenient way of controlling the angle attenuation is provided by:

Code 26 - GXInitLightSpot

 GXInitLightSpot(
 GXLightObj* lt_obj,
 f32 cutoff,
 GXSpotFn spot_fn);

This function defines two easy-to-control parameters, rather than a0, a1, a2 used by GXInitLightAttn.
The parameter cutoff specifies cutoff angle of the spotlight in degrees. The spotlight works while the angle
between the ray for a vertex and the light direction given by GXInitLightDir is smaller than this cutoff
angle. The value for cutoff should be within (0.0 < cutoff <= 90.0), otherwise given light object doesn't
become a spotlight.

The parameter spot_fn defines type of the illumination distribution within cutoff angle. The following graphs
show curve shape of the distribution functions given by acceptable values for spot_fn. The value
GX_SP_OFF turns spotlight feature off even if the color channel setting is using GX_AF_SPOT (see
GXSetChanCtrl).

Figure 19 - Spotlight functions

Note: This function sets parameters only for angular attenuation. Parameters for distance attenuation
should be set using GXInitLightDistAttn. You can also use GXInitLightAttn, but you
have to care about the order for calling these functions because GXInitLightAttn overwrites
parameters for both angle and distance attenuation.

6.4.2 Distance attenuation
GxInitLightAttn can also be used to control the light’s distance attenuation characteristics. As shown
in "Equation 9 - Rasterized color" on page 43, the distance attenuation is an inverse quadratic function of
distance from the light to the vertex in world coordinates. By controlling the coefficients k0, k1, and k2 the
attenuation function can be controlled.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

46 Graphics Library (GX)
A more convenient way to control the distance attenuation is provided by:

Code 27 - GXInitLightDistAttn

GXInitLightDistAttn (
 GXLightObj *lt_obj,
 f32 ref_distance,
 f32 ref_brightness,
 GXDistAttnFn dist_func);

In this function, you can specify the brightness on a defined reference point. The parameter ref_distance is
distance between the light and the reference point. The parameter ref_brightness specifies the ratio of the
brightness at the reference point. The value for ref_distance should be greater than 0 and ref_brightness
should be within 0<ref_brightness<1, otherwise the distance attenuation feature is turned off.

The parameter dist_func defines how brightness decreases as a function of distance. The following graphs
show the curve shapes given by acceptable values for dist_func. The value GX_DA_OFF turns distance
attenuation feature off.

Figure 20 - Distance attenuation functions

Note: This function sets parameters only for distance attenuation. The parameters for angle attenuation
should be set using GXInitLightSpot. You can also use GXInitLightAttn, but you have to
be careful about order when calling these functions because GXInitLightAttn overwrites
parameters for both angle and distance attenuation.

GX_DA_GENTLE GX_DA_MEDIUM GX_DA_STEEP
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Channel parameters 47
6.5 Channel parameters

6.5.1 Channel colors
A vertex may include up to two colors, each having up to two channels: Color (R, G, B) and Alpha (A).
Taken together there are a total of four channels: color0, color1, alpha0, and alpha1.

Each channel has an associated ambient color or alpha and a material color or alpha. These colors can
come from vertex colors or from special ambient and material registers. The register colors are set using
the functions:

Code 28 - GXSetChanAmbColor

void GXSetChanAmbColor(
 GXChannelID chan,
 GXColor amb_color);
void GXSetChanMatColor(
 GXChannelID chan,
 GXColor mat_color);

Note: Only the components of GXColor needed by the channel are set. Also, you may set both the color
and alpha of a channel at the same time if this is more convenient.

6.5.2 Channel control
Each channel is controlled using the function:

Code 29 - GXSetChanCtrl

GXSetChanCtrl(
 GXChannelID chan,
 GXBool enable,
 GXColorSrc amb_src,
 GXColorSrc mat_src,
 GXLightID light_mask,
 GXDiffuseFn diff_fn,
 GXAttnFn attn_fn);

If a lighting channel is disabled, enable = GX_DISABLE, the material color for that channel will be passed
through unmodified to be rasterized. The mat_src parameter determines whether the material color comes
from the vertex color or from the material register.

When a channel is enabled, the lighting equation is computed for each light enabled in the light_mask.

Note: The spot light enable, attn_fn, is defined as part of the channel, even though the angle attenuation
parameters are part of the light description. Diffuse attenuation can be enabled using diff_fn. Nor-
mally, when diff_fn is enabled, the GX_DF_CLAMP value is used. Sometimes it is useful to disable
diffuse attenuation in order to pass distance attenuation directly to the TEV.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

48 Graphics Library (GX)
6.5.3 Pre-lighting
Often, it is useful to pre-light an object in a modeling tool, such as 3D Studio MAX. The result of pre-lighting
is usually captured in the vertex colors of the object. When the lighting channel is configured properly, you
can combine hardware-computed local diffuse lighting with pre-lighting. One example, shown below,
assumes the pre-lit color is GX_VA_CLR0 per-vertex. The equation we want to implement is:

Equation 17 - Pre-lighting

When no local diffuse light is shining on an object, the color is equal to the ambient pre-lit color which is
(pre_lit_clr*amb_scale). When a light is shining on the object, the percentage of pre-lit color is increased
until, where the light is the brightest, the full value of pre-lit color is used.

The following example sets up GX_COLOR0 channel for pre-lighting. The vertex color0 will be the pre-lit
color at full intensity. The ambient color is set to white and scaled so that with no lighting the vertex color
will be 25% of the pre-lit color. The diffuse light color is scaled so that when fully lit, the vertex color will
equal 100% of the pre-lit color.

Code 30 - Pre-lighting API

// init light position and direction and dist atten
GXInitLightColor(
 Lt_obj,
 ScaleColor(myLitColor, 0.75)); // diffuse scale
GXInitLightSpot(
 Lt_Obj,
 30.0,
 GX_SP_COS2);
GXLoadLightObjImm(
 Lt_obj,
 GX_LIGHT0);
GXSetChanAmbColor(
 GX_COLOR0,
 ScaleColor(White, 0.25)); // ambient scale
GXSetChanCtrl(
 GX_COLOR0,
 GX_ENABLE,
 GX_SRC_REG, // ambient color source
 GX_SRC_VTX, // material color source (pre-lit color)
 GX_LIGHT0,
 GX_DF_CLAMP,
 GX_AF_SPOT);
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Specular lighting 49
6.6 Specular lighting
The GP supports the computation of specular lighting. Specularity is actually a surface property that is
commonly equated with “shininess.” Specular highlights result when a surface is angled such that it reflects
the light from the light source toward the eye point. Specular lighting is implemented by creating an infinite
specular light source and modifying the angle attenuation control appropriately. In the equations below, “H”
refers to the half-angle between the vectors to the light and to the eye, as shown in the figure below:

Figure 21 - Specular lighting vectors

Equation 18 - Specular attenuation

One may specify a specular light in the GXSetChanCtrl function by setting the GXAttnFn parameter to
GX_AF_SPECULAR.

Notes:

• Since specular light sources are infinite, distance attenuation does not apply to them. You specify
the specular light direction using GXInitSpecularDir. It will compute and store the half-angle
and light direction. You may also specify the half-angle directly using the function
GXInitSpecularDirHA.

• Setting a light this way overwrites the position and direction from a diffuse light source.

• You should not use GXInitLightDir or GXInitLightPos with a specular light source.

A specular light’s half-angle is stored in the “light direction” field of the light object, while the specular light
direction is stored in the “light position” field of the light object. The specular light direction is first multiplied
by 2^20 before being stored. This factor does not affect the specular computation, since the direction is
normalized first, and the factor allows the same light object to be used as a diffuse, non-directional light
source (when used with a different channel).

Note: The specular-computed light and the diffuse-computed light can only be combined in the TEV. You
can use the macro GXInitLightShininess to control the specular attenuation function:

Code 31 - GXInitLightShininess()

 GXInitLightShininess(lt_obj, shininess);

Ldir

N

L
H

E

© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

50 Graphics Library (GX)
This macro effectively controls how sharp the specular highlight appears on the lit surface. It sets both the
distance and angle attenuation coefficients. Care should be taken when using this macro with other func-
tions that set the attenuation coefficients, such as GXInitLightAttn, GXInitLightAttnA,
GXInitLightAttnK, GXInitLightDistAttn, and GXInitLightSpot.

A plot of the shininess attenuation function is shown below for various values of shininess s. The plot
shows that higher values of shininess result in a sharper fall-off in the attenuation function. Minimum

attenuation occurs when is +/- 1.0.

Figure 22 - GXInitLightShininess values

6.7 Vertex performance
"Table 2 - Vertex performance" on page 51 lists the peak vertex data rate for various combinations of ver-
tex data and lighting. Actual performance depends on a number of game-specific variables and should be
determined empirically (see "6.8 Lighting performance" on page 51 for an example). This table takes into
account transform, lighting, and setup performance.

• #T: Number of (s, t) textures.

• #PT: Number of (s, t, q) projected textures.

• #L: Number of local diffuse or specular lights.

• #BM: Number of generated bump maps.

• #C: Host-supplied color.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Lighting performance 51
6.8 Lighting performance
In hardware, the lighting pipeline computes three components per light. If a color channel is being com-
puted, the components correspond to R/G/B. If an alpha channel is being computed, the components cor-
respond to A/A/A. Each light costs four cycles (at 162MHz) for all the lights that will contribute to a channel,
plus one cycle. The discussion below applies only to local diffuse lighting (i.e., no texture coordinate gener-
ation, bump mapping, etc.). It is assumed that the vertex supplies only a color for each active channel.

For example, if channel GX_COLOR0 uses two lights and channel GX_ALPHA0 uses one light, then the per-
formance is 2*4 + 1*4 + 1 = 13 cycles, or 162/13 million vertices/second (~12.5 million vertices/second). If
channel 0 (GX_COLOR0 and GX_ALPHA0) uses three lights and channel 1 (GX_COLOR1 and GX_ALPHA1)
uses four lights, the total performance is 3*4 + 4*4 + 1 = 27 cycles, or 162/27 million vertices/second (~6.0
million vertices/second).

You can use the performance counter function described in "14 Performance metrics" on page 147 to
determine the number of Graphics Processor clocks required per vertex, given the current lighting and tex-
ture coordinate generation settings. You can also use the online GX calculator, titled Vertex Performance
Calculator, in the Dolphin Reference Manual (HTML).

Code 32 - Setting lighting controls and texture coordinate generation

// set lighting controls and texture coordinate generation first
clks_per_vtx = GXPerfMetric(GX_PERF_CLKSPERVERTEX);
clks_per_vtx = GXPerfMetric(GX_PERF_NONE);
OSReport(“M Vtx/sec = %f\n”, 200.0f/clks_per_vtx);

Table 2 - Vertex performance

Vertex Mode Performance

1C Vertex 32.4MV/s

1T Vertex 27.0MV/s

[1 PT] [1 L] Vertex 20.3MV/s

2T 1L Vertex 14.7MV/s

3T 1L Vertex 11.6MV/s

3PT 1L Vertex 11.6MV/s

2T 2L Vertex 14.7MV/s

2T 4L Vertex 9.5MV/s

4PT 4L Vertex 9.5MV/s

8T 4L Vertex 5.6MV/s

8PT 4L Vertex 5.6MV/s

2T 1BM 1L Vertex 9.5MV/s

3T 2BM 1L Vertex 5.6MV/s

3T 2BM 4L Vertex 4.0MV/s
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

52 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

53
7 Texture coordinate generation

7.1 Specifying texgens
The GP has many ways to generate texture coordinates. This section briefly describes the major aspects
of the GXSetTexCoordGen function. For details on applications of texture coordinate generation, refer to
the Advanced Rendering section in this guide. Also, see "15 GX updates for HW2" on page 155 for the
additional texture generation features of HW2.

Code 33 - GXSetTexCoordGen

GXSetTexCoordGen(
 GXTexCoordID dst_coord,
 GXTexGenType func,
 GXTexGenSrc src_param,
 GXTexMtx mtx);

The texture coordinate generation function takes this general form:

Equation 19 - Texture coordinate generation
dst_coord = func(src_param, mtx)

The input data described by the current vertex descriptor is transformed into a texture coordinate. The
most common function of texture coordinate generation is to transform the src_param by a 2x4 or 3x4 tex-
ture matrix, mtx. In this case, func is set to either GX_TG_MTX2x4 or GX_TG_MTX3x4.

Equation 20 - Transforming src_param by 2x4 and 3x4 matrices
(s,t) = [GX_TEXMTX*][InputCoord] // GX_TG_MTX 2x4

or

(s,t,q) = [GX_TEXMTX*][InputCoord] // GX_TG_MTX 3x4

Input coordinates, src_param, are one of:

Equation 21 - Input coordinates

Note: Input coordinates for GX_TG_MTX2x4 and GX_TG_MTX3x4 functions are the untransformed ver-
tex data.

At a minimum, the GP always transforms input texture coordinates by a matrix. By default, the available
texture matrices are described by the enumeration GXTexMtx. To pass input texture coordinates
unchanged into output coordinates, use the GX_IDENTITY matrix. You must always generate a consecu-
tive number of texture coordinates starting at GX_TEXCOORD0.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

54 Graphics Library (GX)
In addition to transforming texture coordinates, you can also transform positions and normals to create out-
put texture coordinates. Transforming an input texture coordinate using a 2x4 matrix is useful for transla-
tion and rotation effects. A 3x4 matrix is useful for projecting textures and reflection mapping.

Note: You can change the order of output texture coordinates from the input coordinate order using the
GXSetTexCoordGen function. In addition, you can use a single input parameter to generate mul-
tiple texture coordinates. You can also ignore certain input parameters. This allows you to turn var-
ious layers of texture on and off without needing to build a new display list for each version (at the
cost of sending vertex data you don’t use).

The bump mapping function (func = GX_TG_BUMP*) of texture coordinate generation supports the
embossing style of bump mapping. This style of bump mapping is useful when the surface geometry of an
object is being animated. Texture coordinate generation carried out with the bump mapping function also
affects the vertex lighting hardware. A maximum of three GX_TG_BUMP* texture coordinates are supported
simultaneously. See the Advanced Rendering section for more details on embossed bump mapping.

Texture coordinates can also be generated from the red and green components of a particular lighting
channel (func = GX_TG_SRTG). These can be used to create “cartoon” lighting functions, with sharp transi-
tions between arbitrary colors. Normally, the red component represents the intensity function of a single
local diffuse light. The green channel is programmed as a material control. The red channel is mapped to
the s-coordinate. The green channel is mapped to the t-coordinate. The s-coordinate (the diffuse light
intensity) is mapped by an arbitrary 1D texture lookup into a color. The t-coordinate can be used to select
which 1D table to use from an array of tables (i.e., a 2D texture). A maximum of two texture coordinates
may be generated using GX_TG_SRTG. The first one must be used with color channel 0, while the second
can only be used with color channel 1. See the Advanced Rendering section for more details on cartoon
lighting.

Generated texture coordinates must be sorted by function. That is, texture coordinates generated by sim-
ple transforms should occur first, followed by bump map coordinate generation, and finally the generation
of any texture coordinates based on lighting results.

In addition to setting the texture-coordinate generation functions, one must also specify how many coordi-
nates are being generated. This is performed by the following function:

Code 34 - GXSetNumTexGens

GXSetNumTexGens(u8 nTexGens);

The default number of texgens (set in GXInit) is one. If no vertex lighting is enabled
(GXSetNumChans(0)), then at least one texture coordinate must be generated. If at least one channel is
being lit (GXSetNumChans(1)), then the number of texgens can be set to zero.

Table 3 - Texture coordinate generation order

Required Order Texture Coordinate Generation Function

First GX_TG_MTX2x4, GX_TG_MTX3x4

Next GX_TG_BUMP0-7

Last GX_TG_SRTG (maximum of 2 texture coordinates gener-
ated)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Other texture coordinate generation issues 55
7.2 Other texture coordinate generation issues
In the GP, texture coordinates must be scaled to the size of the texture to which they are being applied.
Normally, this is taken care of automatically by GX. However, you can also control the texture coordinate
scaling manually by calling this function:

Code 35 - GXSetTexCoordScaleManually

void GXSetTexCoordScaleManually(GXTexCoordID coord, GXBool enable, u16 ss, u16 ts)

One application of this function is discussed in "10 Indirect texture mapping" on page 103.

The GP also has a feature that allows cylindrical geometry to be wrapped with a texture without having to
specify different texture coordinates for the seam vertices. This is known as cylindrical texture wrapping,
and it can be enabled with the following function:

Code 36 - GXSetTexCoordCylWrap

void GXSetTexCoordCylWrap(GXTexCoordID coord, GXBool s_enable, GXBool t_enable)

In effect, this function computes the spread between each vertex’s texture coordinate and the minimum
coordinate, then subtracts 1 from any coordinate where the spread exceeds 0.5.

7.3 Texture coordinate generation performance
The functions that are based on lighting, GX_TG_BUMP* and GX_TG_SRTG, exhibit performance similar to
lights (see "6 Vertex lighting" on page 41 for vertex lighting performance details). Each GX_TG_SRTG is
equivalent to a light, or four clocks for each coordinate generated plus one clock. Bump mapping is equiv-
alent to two lights, or eight clocks for each coordinate generated plus one clock.

The GX_MTX_2x4 and GX_MTX_3x4 functions take three clocks per component. For the special case of a
single (s, t) texture coordinate transform, only two clocks are required.

In general, the actual vertex performance is a function of lighting, texture coordinate generation, input data,
and output data parameters. To compute the performance for a particular configuration, use the Vertex
Performance Worksheet in the Performance section of the GX API pages in the Dolphin Reference Manual
(HTML). You may also query the hardware to determine the current target vertex performance using the
GXPerfMetric facility (see "Code 32 - Setting lighting controls and texture coordinate generation" on
page 51).
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

56 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

57
8 Texture mapping
Nintendo GameCube has powerful texture mapping features, including single-cycle mipmapping, com-
pressed color texture and color index textures, anisotropic texture filtering, multitexture support (in multiple
cycles), indirect textures, and Z textures. The graphics processor (GP) textures four pixels per clock at a
162 MHz clock speed, for a peak mipmapped texture rate of 648 million pixels/second.

A flexible 1MB Texture Memory (TMEM) can be configured as multiple texture caches, color index lookup
tables (TLUTs), or it can be preloaded with textures. Texture caches can automatically prefetch texels from
main memory as needed. The TMEM is an embedded high-speed DRAM and is physically separate from
the embedded frame buffer (EFB). Textures are prefetched in parallel with rendering.

The GP can be configured to Z-buffer before texturing, eliminating texture fetches for pixels that are not
visible.

The texture hardware performs perspective correction, Level of Detail (LOD), and coordinate operations
like clamping, repeating, or mirroring at the rate of 4 pixels per clock per image. To support multitexturing,
the state describing up to 8 active textures is stored in the GP. Multitexturing is accomplished by process-
ing a quad of pixels (2x2) through the pipeline over multiple cycles.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

58 Graphics Library (GX)
GXInit provides a default configuration of the texture pipeline that abstracts away many of the more com-
plex texture features. (You can override this configuration easily, as described later in this chapter and in "9
Texture environment (TEV)" on page 89.) The following example shows a simple program that loads and
uses a texture.

8.1 Example: Drawing a textured triangle
Code 37 - Simple texture example

/*---*
 Project: Dolphin
 File: example7.1.c

---/

#include <demo.h>

#define BALL64_TEX_ID 8

/*---*
 Model Data
 ---/

static s8 Vert_s8[] ATTRIBUTE_ALIGN(32) =
{
 -100, 100, 0, // 0
 100, 100, 0, // 1
 -100, -100, 0 // 2
};

static u32 Colors_u32[] ATTRIBUTE_ALIGN(32) =
{
// r g b a
 0xff0000ff, // 0
 0x00ff00ff, // 1
 0x0000ffff // 2
};

// Array of texture coordinates
static u8 TexCoords_u8[] ATTRIBUTE_ALIGN(32) =
{
// s t fixed point format is unsigned 8.0
 0x00, 0x00, // 0
 0x01, 0x00, // 1
 0x00, 0x01 // 2
};

/*---*
 Forward references
 ---/

static void CameraInit(Mtx v);

/*---*
 Application main loop
 ---/

void main (void)
{
 PADStatus pad[4]; // Controller state
 GXTexObj texObj; // texture object
 Mtx v; // view matrix
 u8 i; // loop variable
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Example: Drawing a textured triangle 59
 TexPalettePtr tpl = 0;

 pad[0].button = 0;

 DEMOInit(NULL); // Init os, pad, gx, vi

 CameraInit(v);
 GXLoadPosMtxImm(v, GX_PNMTX0);

 GXSetNumChans(1); // Enable light channel; by default = vertex color

 GXClearVtxDesc();
 GXSetVtxDesc(GX_VA_POS, GX_INDEX8);
 GXSetVtxDesc(GX_VA_CLR0, GX_INDEX8);
 // Add an indexed texture coordinate to the vertex description
 GXSetVtxDesc(GX_VA_TEX0, GX_INDEX8);

 GXSetArray(GX_VA_POS, Vert_s8, 3*sizeof(s8));
 GXSetArray(GX_VA_CLR0, Colors_u32, 1*sizeof(u32));
 GXSetArray(GX_VA_TEX0, TexCoords_u8, 2*sizeof(u8));

 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_S8, 0);
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0);
 // Describe the texture coordinate format
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_TEX0, GX_TEX_ST, GX_U8, 0);

 // Load the texture palette
 TEXGetTexPalette(&tpl, "gxTextures.tpl");
 // Initialize a texture object to contain the correct texture
 TEXGetTexObjFromPalette(tpl, &texObj, BALL64_TEX_ID);
 // Load the texture object, tex0 is used in stage 0
 GXLoadTexObj(&texObj, GX_TEXMAP0);

 // Set the Texture Environment (Tev) Mode for stage 0
 // GXInit sets default of 1 TexCoordGen
 // Default TexCoordGen is texcoord(n) from tex(n) with 2x4 identity mtx
 // Default number of tev stages is 1
 // Default stage0 uses texcoord0, texmap0, color0a0
 // Only need to change the tevop
 GXSetTevOp(GX_TEVSTAGE0, GX_MODULATE);

 while(!pad[0].button)
 {

 DEMOBeforeRender();
 // draw a triangle
 GXBegin(GX_TRIANGLES, GX_VTXFMT0, 3);
 for (i = 0; i < 3; i++)
 {
 GXPosition1x8(i);
 GXColor1x8(i);
 // Add texture coordinate index
 GXTexCoord1x8(i);
 }
 GXEnd();
 DEMODoneRender();
 PADRead(pad);
 }
 OSHalt("End of demo");
}

static void CameraInit (Mtx v)
{
 Mtx44 p;
 Vec camPt = {0.0F, 0.0F, 800.0F};
 Vec at = {0.0F, 0.0F, -100.0F};
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

60 Graphics Library (GX)
 Vec up = {0.0F, 1.0F, 0.0F};

 MTXFrustum(p, 240.0F,-240.0F,-320.0F, 320.0F, 500, 2000);
 GXSetProjection(p, GX_PERSPECTIVE);
 MTXLookAt(v, &camPt, &up, &at);
}

The GX API requires the following basic steps to use texturing:
1. Load textures into main memory.

2. Allocate a texture object (GXTexObj) structure for each texture.

3. Initialize the texture object (GXInitTexObj) to describe the texture.

4. Load a texture object (GXLoadTexObj) into the GP to activate the texture.

For color index textures, you should perform the following additional steps:
1. Load TLUTs into main memory.

2. Allocate a TLUT object (GXTlutObj) structure for each TLUT.

3. Initialize the TLUT object (GXInitTlutObj) to describe the TLUT.

4. Load the TLUT (GXLoadTlut) into one of the named TLUT regions of texture memory (GXTluts).

5. Associate a TLUT name with a texture when initializing the color-index texture object
(GXInitTexObjCI).

These steps are explained in more detail in the sections that follow.

8.2 Loading a texture into main memory
The first step in using a texture is to load it into main memory from the optical disc. The software released
with the Nintendo GameCube development system includes a program called TexConv.exe for convert-
ing common images files to a “Texture Palette” (TPL, extension .tpl) format. TPL files can be stored on
disc and loaded using the texPalette library. This library will load a TPL file and return a texture object that
can be used by the GX API. These utilities are described further in the Nintendo GameCube Character
Pipeline and CG Tools Guide.

8.3 Code describing a texture object
The GX API uses a GXTexObj structure to describe the various parameters associated with a texture, and
it is the user’s responsibility to allocate the memory for this structure. Parameters include:

• A pointer (aligned to 32B) to the texture image data.

• The texture’s format.

• The width and height of the texture.

• The texture filter modes.

• The texture wrapping controls.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code describing a texture object 61
The user initializes or changes a GXTexObj using GXInitTexObj (for non-color index textures) or
GXInitTexObjCI (for color-index textures).

Code 38 - Initializing or changing a texture object

 GXInitTexObj(
 GXTexObj* obj,
 void* image_ptr,
 u16 width,
 u16 height,
 GXTexFormats format,
 GXTexWrapModes wrap_s,
 GXTexWrapModes wrap_t,
 GXBool mipmap);

GXInitTexObjCI(
 GXTexObj* obj,
 void* image_ptr,
 u16 width,
 u16 height,
 GXCITexFmt format,
 GXTexWrapModes wrap_s,
 GXTexWrapModes wrap_t,
 GXBool mipmap,
 u32 tlut_name);

Additional mipmap controls (which are set to default values by the GXInitTexObj* functions listed
above) can be set using GXInitTexObjLOD. The GXInitTexObj* functions pre-compile their parame-
ters into hardware register state settings for optimum performance. The GXTexObj structure is used to
store these pre-compiled values and so are not directly readable by the application. Instead, you should
use the GXGet* functions to read the contents of a GXTexObj.

8.3.1 Texel formats
The parameter format in GXInitTexObj and GXInitTexObjCI sets the texture format. The table below
lists the possible formats.

Note: GXInitTexObjCI should only set color-index formats and GXInitTexObj should only set non-
color-index texture formats.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

62 Graphics Library (GX)
The texture filter always processes 4-channel colors, RGBA, where each channel is 8 bits wide. In general,
when the size of the texel component is less than 8 bits, the most significant bits (MSBs) of the texel are
copied into the least significant bits (LSBs) of the color channel:

Code 39 - Texture component promotion to 8 bits

Input Texel = 0xa5a5 (RGB565 format)
 Hex Binary
 Input Channel Red = 0x14, 10100
Filter Channel Red = 0xa5, 10100_101

 Input Channel Grn = 0x2d, 101101
Filter Channel Grn = 0xb6, 101101_10

 Input Channel Blu = 0x05, 00101
Filter Channel Blu = 0x29, 00101_001

This method guarantees that the entire color range from 0 to 255 is utilized.

Note: For the intensity formats, the intensity component is copied to all four of the RGBA channels. For
the intensity/alpha texels, the intensity value of the texel is copied into only the RGB channels. For
the RGB texture formats, the alpha channel is set to opaque (A = 0xff).

Table 4 - Texel formats

Texture Format
Name Description Mipmap Filter Modes

GX_TF_I4 Intensity 4 bit all

GX_TF_I8 Intensity 8 bit all

GX_TF_IA4 Intensity + Alpha 8 bit (4+4) all

GX_TF_IA8 Intensity + Alpha 16 bit (8+8) all

GX_TF_C4 Color Index 4 bit LIN_MIP_NEAR

GX_TF_C8 Color Index 8 bit LIN_MIP_NEAR

GX_TF_C14X2 Color Index 16 bit (14b index) LIN_MIP_NEAR

GX_TF_RGB565 RGB 16 bit (565) all

GX_TF_RGB5A3 When MSB = 1, RGB555 format (opaque)

When MSB = 0, RGBA4443 format (transpar-
ent)

all

GX_TF_RGBA8 RGBA 32 bit (8888) all

GX_TF_CMPR Compressed 4 bits/texel, ~RGB8A1 all
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code describing a texture object 63
RGB5A3 is a 16-bit format that uses the MSB of each texel to indicate if the texel is opaque (MSB == 1) or
transparent (MSB == 0). When the texel is opaque, the remaining 15 bits are assumed to be in a 5/5/5
RGB format. When the texel is transparent the format is assumed to be 4/4/4/3 RGBA. The 8-bit alpha
channel is formed as described above; the three bits of alpha are replicated starting at the MSBs until an 8-
bit field is created. This format allows eight equal levels of transparency from fully transparent (Alpha =
0x00), to fully opaque (Alpha = 0xff).

Note: This format has two ways to represent opaque: when the MSB is 1, or when the MSB is 0 and the
three bits of alpha are all 1’s.

Compressed textures (GX_TF_CMPR) are stored as such in TMEM. Decompression occurs after texture
lookup and before filtering. This results in storage savings in TMEM and main memory, and lower main
memory to TMEM bandwidth requirements.

8.3.2 Texture Lookup Table (TLUT) formats
The table below lists the possible TLUT formats. There is no support for 24-bit or 32-bit TLUT formats.

The color index lookup occurs before filtering. The color that is looked up from the TLUT is converted into
an 8-bit per-component (RGBA) format for filtering in the same manner described in the previous section.

8.3.3 Texture image formats
Textures are stored in main memory as a row-column matrix of tiles with the following attributes:

• Each tile is a small sub-rectangle from the texture image.

• Each tile is a 4x4, 8x4, or 8x8 texel rectangle.

• Each tile is 32B, corresponding to the texture cache line size.

• Textures must be aligned to 32B in main memory and be a multiple of 32B in size.

• Texels are packed differently within a 32B tile depending on their type.

The level of detail maps for a mipmap are stored together one after another in main memory. The mipmap
image data is referenced by the base pointer of LOD 0. The size of a mipmap refers to the size of the LOD
0 map. Mipmaps must be a power of 2 texels in width and height but not necessarily square. All the other
LOD addresses can be calculated by the hardware from size and format information, and from the LOD 0
base pointer.

See Appendix C for texture formatting details. The texture conversion tool, TexConv.exe, can convert
from common image formats to all the Nintendo GameCube formats. See the Nintendo GameCube Char-
acter Pipeline and CG Tools Guide for more details on this tool.

Table 5 - TLUT formats

TLUT Format Name Description

GX_TL_IA8 Intensity + Alpha 16-bit (8I + 8A)

GX_TL_RGB565 RGB 16-bit (R5 + G6 + B5)

GX_TL_RGB5A3 When MSB = 1, RGB555 format (opaque)

When MSB = 0, RGBA4443 format (transparent)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

64 Graphics Library (GX)
8.3.4 Texture coordinate space
Input texture coordinates (those supplied by the application to the GP) are map-relative (normalized) coor-
dinates. The following diagram shows how to map a single texture image onto a quad:

Figure 23 - Map-relative texture coordinates

The GP will scale the input map-relative coordinates into texel coordinate space by multiplying the s-coor-
dinate by the texture width and by multiplying the t-coordinate by the texture height.

Note: Each texture coordinate is associated with a texture map using the GXSetTevOrder function
described in "9 Texture environment (TEV)" on page 89.

The texel coordinate space ranges between +/-64K-texels. The largest texture image size is 1K by 1K-tex-
els. The maximum texel coordinate extent across a primitive is 128K texels regardless of the image size.
This implies a maximum number of repeats that can occur across a single primitive that depends on the
texture size. For example, a 1K-texel image can repeat a maximum of 128 times across a single primitive.

The parameters wrap_s and wrap_t of the GXInitTexObj and GXInitTexObjCI functions control the
texture coordinate operation. Texture coordinates can be operated on independently in one of three ways:
either clamped (GX_CLAMP), repeated (GX_REPEAT), or mirrored (GX_MIRROR).

When clamping (GX_CLAMP), the texture coordinate is clamped within the bounds of the image. If the s-
coordinate is negative, column 0 of the image is used. If the s-coordinate exceeds the width of the image,
then the last column of the image is used. This clamping operation also occurs independently for the t-
coordinate using the height of the image. When mipmapping, the width and height of the image should be
powers of two, but the image does not have to be square.

(0.0, 0.0)

(0.0, 1.0) (1.0, 1.0)

(1.0, 0.0)

Quad Primitive

Texture (any size)

Textured Quad

(0, 0)

(0, n) (m, n)

(m, 0)

(0, 0)

(0, 1.0*n) (1.0*m, 1.0*n)

(1.0*m, 0)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code describing a texture object 65
Texture borders are sometimes used to piece together larger textures from smaller textures (tiled). The
border area contains texels from the adjacent texture(s) so that filtering will use the correct information.
Nintendo GameCube has no support for texture borders. For planar (non-mipmapped) images, the border
can be included in the image itself because the GP supports arbitrary image width and height. Mipmapped
images do not support borders, so they cannot be tiled without visible seams (unless borders are carefully
designed into the textures themselves).

When repeating (GX_REPEAT), the (s, t) coordinates are modulo’d by the width/height of the image.
Repeating is only valid for power of 2 image sizes. You can repeat textures to replicate a small texture over
a large surface.

When mirroring (GX_MIRROR), the (s, t) coordinates are modulo’d by the width/height of the image, similar
to GX_REPEAT. In addition, the coordinates are 1’s complemented on every other wrap. Mirroring a texture
is useful when an image is symmetrical about the (s, t) axis, like a tree texture. Mirroring is also useful for
eliminating the seams that naturally occur when GX_REPEAT-ing a small texture.

The figures below illustrate the coordinate operations for a texture that is four texels wide for both linear
and nearest filters.

Note: When using linear filtering, a ½ texel offset is subtracted to ensure proper spatial alignment of mip-
map levels.

Figure 24 - Linear filter—clamp, repeat, mirror

Input Coordinate

Minus 1/2 texel

GX_CLAMP

GX_REPEAT

GX_MIRROR

1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.02.0

1.0 1.0 2.0 3.0 4.0 5.02.0 0.0

0.0 1.0 2.0 3.0 3.0 3.00.0 0.0

3.0 1.0 2.0 3.0 0.0 1.02.0 0.0

0.0 1.0 2.0 3.0 3.0 2.01.0 0.0
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

66 Graphics Library (GX)
Figure 25 - Nearest filter—clamp, repeat, mirror

8.3.5 Filter modes and LOD controls
Filter modes and LOD controls are set to default values based on the state of the mipmap flag in the
GXInitTexObj and GXInitTexObjCI functions. These default values can be overridden by a subse-
quent call to GXInitTexObjLOD. The parameters described in this section are set using the
GXInitTexObjLOD function.

Code 40 - GXInitTexObjLOD

GXInitTexObjLOD(
 GXTexObj* obj,
 GXTexFilters min_filt,
 GXTexFilters mag_filt,
 f32 min_lod,
 f32 max_lod,
 f32 lod_bias,
 GXBool bias_clamp,
 GXBool do_edge_lod,
 GXAnisotropy max_aniso);

Figure 26 - Pixel projected in texture space example

In the example above, the road texture is projected onto the view plane such that a square pixel on the
screen maps to an elongated quadrilateral in texture space. The following discussion will reference this
image of the pixel projected in texture space.

Input Coordinate

GX_CLAMP

GX_REPEAT

GX_MIRROR

1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.02.0

0.0 1.0 2.0 3.0 3.0 3.00.0 0.0

3.0 1.0 2.0 3.0 0.0 1.02.0 0.0

0.0 1.0 2.0 3.0 3.0 2.01.0 0.0

texture

view plane

pixel
pixel

projected on
texture
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code describing a texture object 67
The level-of-detail calculation computes the effective texel-to-pixel ratio for a quad (2x2) of pixels. A log
base 2 function converts the ratio into a corresponding mipmap level and a fraction, called LOD. Negative
LOD indicates magnification, while positive LOD indicates minification. There are two methods of comput-
ing LOD. By setting do_edge_lod to GX_TRUE, LOD is computed using the distance in (s, t) between adja-
cent pixels in the quad. If you set do_edge_lod to GX_FALSE, LOD is computed using the distance in (s, t)
between diagonal pixels in the quad.

Figure 27 - LOD calculation

In other words, the LOD calculation assumes that a pixel projects to a square in texture space. This is only
true if the polygon is roughly facing the viewer. The square filter pattern used by normal mipmapping is
called an isotropic (uniform shape) filter. When the polygon to be rendered is oblique to the viewer, the
pixel projected into texture space is distorted into a quadrilateral. In this case, the LOD calculation makes
the square encompass the quadrilateral, resulting in excessive blurring in one of the coordinate directions.

There are two methods available in the GP for improving the overblurring behavior of the LOD computa-
tion: LOD biasing and anisotropic filtering.

filter footprint

dia
gon

al d
ista

nce

si
de

 =
 d
ia
go

na
l d

is
t

pixel projected in texture
space

do_edge_lod = GX_FALSE

LOD=log2(4.1)

LOD=0 texture

pixel projected in texture
space

a
m
ax

(a
,b
)

do_edge_lod = GX_TRUE

filter footprint

LOD=0 texture

b

LOD=log2(3.8)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

68 Graphics Library (GX)
The computed LOD value can be adjusted using the lod_bias parameter of the GXInitTexObjLOD func-
tion. Lod_bias can be used to prevent texture from becoming too blurry due to the conservative nature of
the LOD calculation. Lod_bias must be in the range –4.0 to +3.99. The result of LOD + lod_bias is clamped
between the min_lod and max_lod parameters. The min_lod and max_lod parameters define the usable
region of the texture pyramid and can range from 0.0 to 10.0. The following figure shows how a negative
LOD_bias can be added to the computed LOD to effectively shrink the filter footprint in texture space.

Figure 28 - LOD bias

LOD bias will sharpen the texture when the polygon is oblique (the desired effect) but also when it is not.
To alleviate this problem, the bias_clamp parameter can be used to lessen the effect of lod_bias when the
polygon is more perpendicular to the view direction. When bias_clamp is enabled, the biased LOD will be
clamped to the minimum extent of the pixel projected in texture space.

Multiple square trilinear texture filter ‘footprints’ can be iterated to approximate the shape of the quadrilat-
eral. This type of filter produces a sharper pixel and is said to be anisotropic (non-uniform shape). The
maximum number of ‘footprints’ allowed is programmable using the max_aniso parameter. Setting
max_aniso to GX_ANISO_1 allows only one square footprint and is the standard isotropic mipmap filter.
Setting max_aniso to GX_ANISO_2 and GX_ANISO_4 allows a maximum of 2 or 4 footprints per pixel,
respectively. The actual number of footprints used for each pixel is determined by the anisotropy of the
pixel as computed by the hardware. Trilinear filtering should be enabled (min_filt = GX_LIN_MIP_LIN)
when using GX_ANISO_2 or GX_ANISO_4. Also, edge LOD must be enabled in order for anisotropic filter-
ing to take place.

filter footprint
pixel projected in texture space

a

b

m
ax

(a
,b

)

m
ax

(a
,b

) +
lo

d_
bi

as

pixel projected in texture space

(lod_bias is negative)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code describing a texture object 69
Multiple iterations of the texture filter require multiple internal cycles of the texture hardware. For example,
if GX_ANISO_4 is enabled, and the polygon being rendered requires the maximum four filter steps, the
peak fill rate will be divided by a factor of four. Anisotropic filtering does not lower the number of available
TEV stages (see "9 Texture environment (TEV)" on page 89).

Figure 29 - Anisotropic filtering

pixel projected in texture
space two square 'footprints' to

approximate the quadralateral
direction of anisotropy
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

70 Graphics Library (GX)
The maximum image size is 1K x 1K-texels, so the largest mipmap pyramid is 11 levels of detail. LOD 0
always refers to the highest resolution LOD, regardless of the image size. In the case of the 1K x 1K-texel
mipmap, LOD 10 is the coarsest resolution (1 x 1 texel).

Figure 30 - Mipmap pyramid for the largest texture size

When LOD is negative, the LOD is said to be in the magnification region. In other words, the pixel pro-
jected into texture space covers only a fraction of a texel. This causes the LOD 0 texture to be magnified
on the display device.

When the texture is in the magnification region, you can choose between GX_NEAR and GX_LINEAR filter
modes using the mag_filt parameter.

1024x1024
512x512
256x256
128x128

64x64
32x32
16x16

8x8
4x4
2x2
1x1

max_lod = 9.0

min_lod = 2.5

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

LOD

M
in

ifi
ca

tio
n

M
ag

ni
fic

at
io

n

us
ab

le
 te

xt
ur

e
re

gi
on
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Code describing a texture object 71
Within an image, the GX_NEAR filter mode indicates that the closest texel to the pixel’s s- and t-coordinates
is chosen, as shown in the figure below:

Figure 31 - GX_NEAR

The GX_LINEAR filter mode indicates that the nearest four texels to the pixel’s (s, t) coordinates should be
bilinearly interpolated using the (s, t) fractional bits, as shown in the figure below:

Figure 32 - GX_LINEAR

When LOD is positive, the LOD is said to be in the minification region. In other words, the pixel projected
into texture space covers more than one texel, and to achieve a 1:1 texel to pixel ratio, these texels must
be filtered. The texture will appear smaller on the display device.

A B

C D

P

Pixel Color P = A

A B

C D

P

s0

s1

s0 = A + (B-A)*s_fraction

s1 = C + (D-C)*s_fraction

Pixel Color P = s0 + (s1-s0)*t_fraction
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

72 Graphics Library (GX)
As illustrated in the table below, when the texture is in the minification region, you can choose between
several filter modes using the min_filt parameter.

Color-index textures cannot use the GX_NEAR_MIP_LIN or GX_LIN_MIP_LIN filter modes. All other tex-
ture types, including compressed texture, can use any min_filt filter mode.

8.4 Loading texture objects
As shown in "9 Texture environment (TEV)" on page 89, the default texture pipeline configuration accepts
up to eight texture coordinates, each associated with a texture map. To associate a texture with
GX_TEXMAP0, for example, you use the following function:

Code 41 - GXLoadTexObj

GXLoadTexObj(GX_TEXMAP0, &myTexObj);

Loading a texture object only loads the state describing the texture into the hardware. The default GX con-
figuration allocates texture memory as caches and automatically assigns a cache to use with this texture
when you call GXLoadTexObj. Once you have loaded a texture object, you may render polygons using
that texture. Up to eight texture objects can be loaded at once for multitexturing. There is no need to syn-
chronize the texture state with primitives explicitly (as was the case with N64). The GP automatically syn-
chronizes state changes with pixels in the rendering pipeline.

Refer to "9 Texture environment (TEV)" on page 89 for more advanced control of texture coordinate order-
ing.

Table 6 - Mipmap minimum filter modes

Name Within LODn, LODn+1
(based on s, t fraction)

Between LODn, LODn+1
(based on LOD fraction)

GX_NEAR_MIP_NEAR Use texel nearest to sample point. Use nearest LOD.

GX_NEAR_MIP_LIN Use texel nearest to sample point. Interpolate between two
closest LODs.

GX_LIN_MIP_NEAR Bilinearly interpolate four texels
surrounding sample point.

Use nearest LOD.

GX_LIN_MIP_LIN Bilinearly interpolate four texels
surrounding sample point.

Interpolate between two
closest LODs
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Loading Texture Lookup Tables (TLUTs) 73
8.5 Loading Texture Lookup Tables (TLUTs)
Code 42 - Loading TLUTs

GXInitTlutObj(
 GXTlutObj* obj,
 void* lut,
 GXTlutFmt fmt);

GXLoadTlut(
 GXTlutObj* obj,
 u32 tlut_name,
 u16 start_entry,
 u16 n_entries);

In order to use a color-indexed texture, you must first load a texture lookup table (TLUTs) into TMEM. The
default configuration of TMEM allows for 20 TLUTs, 16 with 256 entries and 4 with 1kb entries (see the
GXTluts enumeration). To load a TLUT, you follow steps similar to loading a texture object:
1. Describe the location and format of the TLUT in main memory using GXInitTlutObj.

2. Load the TLUT into one of the named TLUTs in texture memory using GXLoadTlut.

3. Use GXInitTexObjCI to describe the color-indexed texture.

4. Set the tlut_name parameter to the TLUT name you have loaded.

Pointers to TLUTs in main memory must be aligned to 32 bytes. TLUTs must be a multiple of 16 entries,
with 16 bits for each entry. The total number of entries loaded using GXLoadTlut must also be a multiple
of 16.

8.6 How to override the default texture configuration
So far, we have discussed the texture pipeline only in the context of the default configuration set by
GXInit. The purpose of this configuration is to abstract some of the complexities of the GX API in order to
allow the developer to concentrate on the basic features. However, developers may easily override the
default configuration in order to tailor the system to fit their specific applications more closely. This section
discusses how a developer can take advantage of the GX API’s additional flexibility to configure the follow-
ing options:

• Allocation of TMEM.

• Binding of textures to texture caches and preloaded textures at run time.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

74 Graphics Library (GX)
8.6.1 Texture regions
The TMEM is a 1MB high-speed DRAM that can be configured to contain texture caches, preloaded tex-
tures, and TLUTs. The GX API uses a simple TMEM management scheme that is set up by GXInit. This
scheme assumes that texture caches and TLUT regions are pre-allocated in TMEM. The default configura-
tion does not allow use of pre-loaded textures. Regions are simply defined by a TMEM pointer and size. At
runtime, textures are bound to a particular cache region by calling GXLoadTexObj according to informa-
tion such as the texture ID of the target and the texture format. TLUT data is loaded into TLUT regions by
calling GXLoadTlut. GXInit configures TMEM as shown below:

Figure 33 - Default TMEM configuration

Logically, the 1MB TMEM is split into two 512KB low and high banks. The default configuration defines 16
texture caches for the low bank and 8 texture caches for the high bank. When textures are used, each tex-
ture ID (GX_TEXMAP0, GX_TEXMAP1, ... , GX_TEXMAP7) is allocated two texture caches from the low
bank and one from the high bank.

High Bank (512KB)Low Bank (512KB)

GX_TEXMAP0 (A) GX_TEXMAP0 (B)

GX_TEXMAP0 (C) GX_TEXMAP4 (B)

GX_TEXMAP1 (A) GX_TEXMAP1 (B)

GX_TEXMAP1 (C) GX_TEXMAP5 (B)

GX_TEXMAP2 (A) GX_TEXMAP2 (B)

GX_TEXMAP2 (C) GX_TEXMAP6 (B)

GX_TEXMAP3 (A) GX_TEXMAP3 (B)

GX_TEXMAP3 (C) GX_TEXMAP7 (B)

TLUT 0, 256 entry

TLUT 1, 256 entry
GX_TEXMAP4 (A)

GX_TEXMAP4 (C)

GX_TEXMAP5 (A)

GX_TEXMAP5 (C)

GX_TEXMAP6 (A)

GX_TEXMAP6 (C)

GX_TEXMAP7 (A)

GX_TEXMAP7 (C) TLUT 3, 1024 entry

32KB 32KB

32KB
8KB

TLUT 2, 1024 entry

TLUT 1, 1024 entry

TLUT 0, 1024 entry

TLUT 15, 256 entry

32KB

0x00000

0x7ffff

0x80000

0xfffff
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

How to override the default texture configuration 75
TLUTs that are used for color index format are allocated in the remainder of the high bank. There are
16x256-entry and 4x1024-entry TLUTs defined. TLUTs must always be allocated in the high bank.

When texture is without mipmapping and does not have a 32-bit format, only one cache region in the low
bank (part A in Figure 33) is used. Cache regions in both the low bank and the high bank (parts A and B in
Figure 33) are used only when a 32-bit format is used.

When 32-bit formatted mipmapped textures that are not color index formatted are used, even LODs are
cached in one bank while odd LODs are cached in the opposite bank. Thus, one cache region from the low
bank and one cache region from the high bank (parts A and B in Figure 33) are used.

When color index textures with mipmapping are used, both odd LODs and even LODs are allocated in the
low bank (parts A and C in Figure 33). This is because the color index texture region must always be allo-
cated in the low bank (that is, they must be in the bank opposite from the TLUTs).

When 32-bit format with mipmapping is used, it is necessary to have twice the continuous cache region for
the odd LODs and even LODs as compared to when normal texturing is used. In this case, the necessary
regions (parts A and C in Figure 33) are allocated from the low bank. However, because a sufficient num-
ber of regions cannot be secured in the high bank, cache regions and adjoining textures with different map
IDs are shared. No operational problems are caused when one cache region is shared by two or more tex-
tures. But performance may be affected.

The GX API allows the application to configure texture regions using GXInitTexCacheRegion and
GXInitPreLoadRegion. Application developers can also define their own region-binding schemes by
registering a callback function with GXSetTexRegionCallback or GXSetTlutRegionCallback.

8.6.2 Cached regions
Texture regions describe areas of TMEM that can be used as texture caches or preloaded textures.

Code 43 - GXInitTexCacheRegion

GXInitTexCacheRegion(
 GXTexRegion* region,
 GXBool is_32b_mipmap,
 u32 tmem_even,
 GXTexCacheSize size_even,
 u32 tmem_odd,
 GXTexCacheSize size_odd);

For cached images, the s/t coordinates are translated into cache tag memory addresses. If the addressed
tag indicates the texture is resident in TMEM, the s/t coordinates are translated into TMEM addresses, and
the texture is accessed. If the texture is not resident, the GP will issue memory requests to copy the texture
from main memory to TMEM. Once the texture is resident, the s and t coordinates are translated into
TMEM addresses and the texture is accessed. The unit of texture access is a texture cache line (32B). All
textures are stored as a multiple of this line size. The GP makes texture requests ahead of time and stores
the TMEM addresses in a FIFO. Prefetching allows rendering to proceed during a cache miss.

The GP uses main memory addresses for tags, so caches can be shared among textures (lower perfor-
mance) without needing to invalidate between texture loads. Mipmaps that are to be trilinearly filtered must
allocate a cache region in both the low and high banks. The tmem_even parameter defines the location in
TMEM where even LODs will be cached. The tmem_odd parameter defines the location in TMEM where
odd LODs will be cached. Usually, the two types of LODs must be placed in opposite banks. For non-mip-
mapped (planar) textures (except GX_TF_RGBA8), only the *_even parameters need to be defined. Planar
(except color index) texture regions can be allocated in either the low or high bank, but cannot span both
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

76 Graphics Library (GX)
banks. Color-indexed texture regions (both planar and mipmapped) must always be allocated in the low
TMEM bank. The size_even and size_odd parameters describe the size of the cache region for their
respective sets of LODs. Unused odd parameters should be set to 0 (address) and GX_TEXCACHE_NONE
(size).

Full-color textures (GX_TF_RGBA8) can only be mipmapped in two cycles, with the even LOD accessed on
the first cycle and the odd LOD accessed on the next cycle. In this case, the tmem_even cache (which
must be in the low bank) is used to store the AR (alpha and red) components of the texture and the
tmem_odd cache (which must be in the high bank) is used to store the GB (green and blue) components.

Note: This explanation is simplified; the actual storage is slightly different.

Within each bank, the even LODs are cached first, followed by the odd LODs. For this case, the size_even
and size_odd parameters refer to the size of the cache region for their respective LODs within one bank.
Thus the actual cache memory usage will be twice the sum of the even and odd sizes. The parameter
is_32b_mipmap indicates the region will be used in this manner.

TMEM caches are sized in terms of superlines (512B or 4x4 lines). TMEM caches can be only one of three
sizes: 32KB, 128KB, and 512KB. Each cache pointer must be aligned to 2KB (2x2 superlines).

The default cached regions created by GXInit are 8x8 superlines (32KB).

8.6.3 TLUT regions
Code 44 - GXInitTlutRegion

GXInitTlutRegion(
 GXTlutRegion* region,
 u32 tmem_addr,
 GXTlutSize tlut_sz);

TLUTs must be allocated in the high bank of TMEM. Color-indexed texture regions must be allocated in the
low bank of TMEM. Each 16-bit entry of a TLUT in main memory is replicated into 16 copies during the
TLUT load. Therefore, the total memory in bytes that needs to be allocated for a TLUT is tlut_sz * 16 * 2B.
A 256-entry TLUT requires an 8KB TLUT region.

The tmem_addr for the TLUT region must be aligned to 512B (16 entries * 16 * 2B). Furthermore,
tmem_addr must be aligned to the size of TLUT. For example, a 256-entry TLUT should be aligned to an
8KB TMEM address.

The TLUT region size can be any power of 2 ranging from 16 entries to 16kb entries. The tmem_addr is
bitwise OR’d with the texel index to determine the address of the entry. This makes it possible to create
index sizes that are smaller than the texel type indicates.

For example, you can create a 1024-entry TLUT and access it using the GX_TF_C14X2 (16-bit) texture
type. Since a 1024-entry table requires a 10-bit index, the most significant 6 bits of each index in the tex-
ture should be set to zero.

8.6.4 Preloaded regions
Code 45 - GXInitTexPreLoadRegion()

void GXInitTexPreLoadRegion(
 GXTexRegion* region,
 u32 tmem_even,
 u32 size_even,
 u32 tmem_odd,
 u32 size_odd);
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

How to override the default texture configuration 77
Preloaded textures are loaded explicitly by the application into a TMEM region. The texture is stored in
TMEM in the same format as main memory. Unlike cached regions, the texture cache tag memory is not
checked when accessing a preloaded region. Small, frequently-used textures are good candidates for pre-
loading.

Note: Preloaded textures are not supported by the default configuration of TMEM (the entire TMEM is
mapped as caches or TLUTs).

The size_even and size_odd parameters to GXInitTexPreLoadRegion specify the size of the texture
regions in bytes. The size_even region is used for even LODs and the size_odd is used for odd LODs
when mipmapping. When preloading non-mipmapped (non-GX_TF_RGBA8) images, you only need to
specify the *_even parameters.

Figure 34 - Mipmap in TMEM

H ig h H a lf

3 2 B

1 6 K

3 2 K -1

Im a g e : 8 L e v e l M ip m a p P y ra m id
* n o t d ra w n to s c a le

L o w H a lf

3 2 B

0

1 6 K -1

L e v e l 0

L e v e l 2

L e v e l 4

L e v e l 6

L e v e l 1

L e v e l 3

L e v e l 5
L e v e l 7

tm e m _ e v e n

tm e m _ o d d
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

78 Graphics Library (GX)
The tmem_even and tmem_odd parameters to GXInitTexPreLoadRegion for a preloaded texture are
required only to be 32B-aligned. For preloaded mipmaps, tmem_even and tmem_odd must be in opposite
TMEM banks. The tmem_even value will define the location of all even LODs and tmem_odd will define
the location of all odd LODs.

Note: Even LODs will use more memory in their bank of TMEM than the odd LODs in the opposite bank.

Figure 35 - Planar texture in TMEM
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

How to override the default texture configuration 79
Figure 36 - 32-bit planar texture in TMEM

For planar non-color index textures (except 32-bit), only tmem_even is used, and may be located in either
the high or low bank of TMEM. For color index textures, tmem_even must be in the low bank of TMEM.

H i g h H a l f

3 2 B

1 6 K

3 2 K - 1

L o w H a l f

3 2 B

0

1 6 K - 1

G B

t m e m _ o d d

t m e m _ e v e n

A R
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

80 Graphics Library (GX)
For 32-bit planar textures (GX_TF_RGBA8), the tmem_even is the address of the AR tiles and must be in
the low bank of TMEM. The GB tiles are located at tmem_odd and must be in the high bank of TMEM.

Figure 37 - Color index mipmap in TMEM

H i g h H a l f

3 2 B

1 6 K

3 2 K - 1

I m a g e : 8 - L e v e l M i p m a p P y r a m i d
* n o t d r a w n t o s c a l e

L o w H a l f

3 2 B

0

1 6 K - 1

L e v e l 0

L e v e l 2

L e v e l 4

L e v e l 6

L e v e l 1

L e v e l 3

L e v e l 5
L e v e l 7

t m e m _ e v e n

t m e m _ o d d

T L U T
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

How to override the default texture configuration 81
For color index preloaded textures, tmem_even and tmem_odd must be in the low bank of TMEM. The
hardware will load all even LODs at the tmem_even address and all odd LODs at the tmem_odd address.

Figure 38 - 32-bit mipmap in TMEM

GX_TF_RGBA8 textures are stored as interleaved AR and GB tiles (32B/tile). When preloading a
GX_TF_RGBA8 texture, the AR and GB are written to opposite TMEM banks. The tmem_even (AR) tiles
should be in the low TMEM bank and the tmem_odd (GB) tiles should be in the high TMEM bank.

Note: 32-bit textures use the same amount of memory in the low and high banks.

To actually load the texture into TMEM call:

Code 46 - GXPreLoadEntireTexture()

GXPreLoadEntireTexture(
 GXTexObj* obj,
 GXTexRegion* region);

H ig h H a lf

3 2 B

1 6 K

3 2 K -1

Im a g e : 8 L e v e l M ip m a p P y ra m id
* n o t d ra w n to s c a le

L o w H a lf

3 2 B

0

1 6 K -1

G B L e v e l 1

G B L e v e l 3

G B L e v e l 5

G B L e v e l 7

tm e m _ o d d

tm e m _ e v e n

A R L e v e l 0

A R L e v e l 2

A R L e v e l 4

A R L e v e l 6

A R L e v e l 1

A R L e v e l 3

A R L e v e l 5

A R L e v e l 7

G B L e v e l 0

G B L e v e l 2

G B L e v e l 4

G B L e v e l 6
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

82 Graphics Library (GX)
To associate a hardware texture map ID (GXTexMapID) with the preloaded region, use:

Code 47 - GXLoadTexObjPreLoaded()

void GXLoadTexObjPreLoaded(
 GXTexObj* obj,
 GXTexRegion* region,
 GXTexMapID id);

8.6.5 Texture cache allocation
You can override the default TMEM allocation by replacing the callback function that binds texture objects
to texture regions:

Code 48 - GXSetTexRegionCallback

typedef GXTexRegion *(*GXTexRegionCallback)(GXTexObj *tex_obj);

GXTexRegionCallback GXSetTexRegionCallback(GXTexRegionCallback f);

This function is called by GXLoadTexObj and is expected to return a pointer to a GXTexRegion to use for
this texture. These texture regions can be statically allocated or dynamically allocated according to the
needs of the application. The TMEM allocation scheme must also consider color index TLUT and pre-
loaded texture memory requirements. GXSetTexRegionCallback returns the callback that was set prior
to its invocation.

The programmer can use the GXInitTexObjUserData function to set a pointer to user data in the tex-
ture object. This data may be needed in order to implement a better TMEM allocation strategy. The data
can be retrieved using GXGetTexObjUserData.

8.6.6 TLUT allocation
If color index textures are to be used, the TMEM allocation scheme must consider TLUT region allocation
in addition to texture region allocation. As described in "8.6.3 TLUT regions" on page 76, there are more
restrictions on the placement of color index textures and TLUTs in TMEM than on non-color index textures.
To override the default TLUT allocation scheme the application must replace the callback function that
associates a TLUT name with a TLUT region using:

Code 49 - GXSetTlutRegionCallback

typedef GXTlutRegion *(*GXTlutRegionCallback)(u32 name));

GXTlutRegionCallback GXSetTlutRegionCallback(GXTlutRegionCallback f);

The callback function is called by GXLoadTexObj to associate the TLUT name (GXInitTexObjCI) with
a TLUT region. GXLoadTlut also calls the callback function. GXSetTlutRegionCallback returns the
callback that was set prior to its invocation.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Invalidating texture cache 83
8.7 Invalidating texture cache
The texture hardware maintains a Cache Tag Memory that maps a texture cache line’s main memory
address to its TMEM address. Because of this, textures can share a cached region without address colli-
sions. However, the following situations will require invalidating the texture cache:

• The texture is moved to a new main memory location.

• A new texture is copied into the memory occupied by a previously used texture.

• The application modifies some texels of a texture in main memory.

Invalidating the texture cache requires resetting the state of certain tag bits in the cache tag memory. This
will force the reloading of the affected texture. We provide functions for invalidating either a texture region
or the entire TMEM:

Code 50 - Invalidating texture memory

GXInvalidateTexRegion(GXTexRegion* region);
GXInvalidateTexAll(void);

It is not necessary to invalidate TLUT regions and preloaded regions because they are explicitly loaded
into TMEM. If the data in a TLUT or preloaded texture is changed, the application must reload it for the
change to take effect.

8.8 Changing the usage of TMEM regions
Sometimes an application will change the use of a particular region of TMEM from preloaded to cached or
from TLUT to cached. In these cases—and only these—the application should call GXTexModeSync to
ensure all texels currently in the pipeline are flushed before the change in usage goes into effect. The call
should be made prior to drawing any primitives that will use the TMEM region in the new mode. When
changing a TMEM region from cached to preloaded (or TLUT), the command to load the TMEM region will
synchronize the pipeline automatically.

8.9 Creating textures by copying the embedded frame buffer
Textures can be created by copying the Embedded Frame Buffer (EFB) to main memory using the
GXCopyTex function. This is useful when creating dynamic shadow maps, environment maps, motion blur
effects, etc.

All non-color index texture types except compressed textures (GX_TF_CMPR) can be created during the
copy. The texture copy operation will create the correct tiling and formatting of the texture so it can be read
directly by the hardware. Optionally, you can apply a box filter to the image in the EFB in order to create a
lower level of detail (LOD) texture. The box filter can be used to create mipmaps from the EFB data.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

84 Graphics Library (GX)
HW2 adds new options for how information is copied from the EFB into a texture. See "15 GX updates for
HW2" on page 155 for details.

The EFB can be used in one of two basic modes: antialiased (pixel format is GX_PF_RGB565_Z16) and
non-antialiased (pixel format is GX_PF_RGB8_Z24 or GX_PF_RGBA6_Z24). You can copy color textures in
either mode, but Z textures can only be copied from non-antialiased frame buffers. See "12 Video output"
on page 125 for more details on the EFB modes.

Figure 39 - Texture copy data path

The RGB-to-YUV conversion that takes place in the texture copy pipeline is the same as that which is used
for the display copy pipeline for video output (see "12 Video output" on page 125). As a result, the intensity
is scaled: 16 <= Y <= 235.

Table 7 - Texture copy formats and conversion notes

Format Conversion

GX_TF_I4 RGB->(Y)UV, AA and non-AA pixel formats.

GX_TF_I8 RGB->(Y)UV, AA and non-AA pixel formats.

GX_TF_A8 A (6 bits) ->A (8-bits, 2 MSBs replicated in LSBs), only with pixel format
GX_PF_RGBA6_Z24.

GX_TF_IA4 RGBA->(Y)UV(A), if pixel format is not GX_PF_RGBA6_Z24, then A = 0xf.

GX_TF_IA8 RGBA->(Y)UV(A), if pixel format is not GX_PF_RGBA6_Z24, then A = 0xff.

GX_TF_RGB565 RGB->RGB, bits truncated for non-AA pixel formats.

GX_TF_RGB5A3 RGBA->RGBA, if pixel format is not GX_PF_RGBA6_Z24, then MSB=1, i.e.
R5G5B5.

GX_TF_RGBA8 RGBA->RGBA, if pixel format is not GX_PF_RGBA6_Z24, then A = 0xff.

GX_TF_Z24X8 Z (24 bits) -> Z (32 bits), only when pixel format is non-antialiased,
GX_PF_RGB8_Z24 or GX_PF_RGBA6_Z24.

EFB
Color and Z

Texture Buffer
in Main Memory

copy pipeline

RGB to
YUV

Gamma
Correction

gamma=1.0

Antialias
Deflicker

filter state

Texture
Format

Y

RGBA
Z

Box
Filter
(opt.)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Creating textures by copying the embedded frame buffer 85
The following functions control the copying of textures from the EFB to main memory:

Code 51 - Texture copy functions

void GXSetTexCopySrc(
 u16 left,
 u16 top,
 u16 wd,
 u16 ht);

void GXSetTexCopyDst(
 u16 wd,
 u16 ht,
 GXTexFmt fmt,
 GXBool mipmap);

void GXCopyTex(
 void* dest,
 GXBool clear);

GXSetTexCopySrc specifies the source rectangle to copy from the EFB. All parameters to
GXSetTexCopySrc must be multiples of two pixels. GXSetTexCopyDst specifies the destination rectan-
gle in main memory. Normally, the source and destination rectangles would have the same size. However,
when copying small textures that will be composited into a larger texture, the source and destination rect-
angles may differ.

Figure 40 - Copying small textures into a larger texture in main memory

1 2

3

4

(left, top)

ht

wd

EFB

wd

ht

GXSetTexCopySrc(left, top, wd, ht)

GXSetTexCopyDst(wd, ht, fmt, mipmap)

GXCopyTex(dest, clear)
Main Memory
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

86 Graphics Library (GX)
The fmt argument of GXSetTexCopyDst can specify a few subtle types of texture copy operations. The
format GX_TF_A8 is used specifically to copy the alpha channel from the EFB into a GX_TF_I8 formatted
texture.

Note: GX_TF_I8 will copy the scaled luminance of the EFB into a GX_TF_I8 texture. When reading a
texture GX_TF_A8 and GX_TF_I8 are equivalent.

When color textures are converted from an GX_PF_RGB8_Z24 pixel format to a lower-resolution color for-
mat, such as GX_TF_RGB565, the least significant bits (LSBs), of the 8-bit colors are truncated. When
color textures are converted from a lower-resolution pixel format, say GX_PF_RGB565_Z16, to a higher
resolution texture format, say GX_TF_RGBA8, the most significant bits (MSBs) of each pixel are replicated
in the LSBs of each texel. This conversion process distributes the estimation error evenly and allows each
texel to represent the minimum or maximum value.

In general, you should only copy textures containing alpha from an EFB with format GX_PF_RGBA6_Z24.
When copying a texture containing alpha from an EFB without alpha, alpha will be set to its maximum
value.

The GX_TF_Z24X8 format can be used to copy the 24-bit Z buffer to a 32-bit texture (equivalent format to
GX_TF_RGBA8, see Appendix D). The next section describes how this “Z texture” can be used. It is not
legal to copy out 8-bit or 16-bit Z textures, and you may not copy Z from an antialiased EFB (see "12 Video
output" on page 125 for more details on EFB formats).

Note: HW2 relaxes some of these restrictions. See "15 GX updates for HW2" on page 155 for details.

The function GXCopyTex initiates the copy operation. It can conditionally clear the EFB at the same time if
clear is true. The update enable flags for each buffer to be cleared must also be enabled (see
GXSetColorUpdate, GXSetAlphaUpdate, and GXSetZMode). This allows individual buffers to be con-
ditionally cleared. The copy filter in effect at the time the texture is copied (see GXSetCopyFilter) will
be applied to the EFB data during the conversion process.

To copy a texture, the application must first allocate a buffer in main memory that is the size of the texture
to be copied. This size can be determined using GXGetTexBufferSize. This function takes texture pad-
ding and texture type into account in its calculations.

Before a copied texture can be applied to a textured primitive, you must ensure that the copy operation has
finished. The command GXPixModeSync may be called after GXCopyTex in order to guarantee this.
GXPixModeSync flushes the pixel pipeline, ensuring that the copy is finished before a new primitive is
started.

Sometimes it is useful to determine the screen rectangle that encloses a group of rendered geometry. The
functions GXClearBoundingBox and GXReadBoundingBox can determine the bounding box of geome-
try rendered in the EFB. Call GXClearBoundingBox first to reset the bounding box, then render the
geometry. The GP will update the minimum and maximum screen-space (x, y) continually for each pixel
drawn. After rendering the geometry, the bounding box values can be read back using
GXReadBoundingBox. You can use these values to compute the arguments to GXSetTexCopySrc.

8.10 Z textures
The GP supports combining a color texture and a Z texture into the Embedded Frame Buffer (EFB). This
feature can be used to facilitate image-based rendering, in which a frame buffer is a composite of smaller
color and depth images, like sprites with depth. Each of the sprites can be computed at independent frame
rates, but the final frame buffer is composited at the target frame rate.

You can create Z textures by copying a region of the EFB using GXCopyTex with the pixel format (see
GXSetTexCopyDst) set to GX_TF_Z24X8. Additionally, 8- and 16-bit Z textures can be created offline or
by using the CPU. The GXCopyTex function cannot create 8- or 16-bit Z textures (except on HW2; see "15
GX updates for HW2" on page 155). Moreover, Z textures cannot be copied from an antialiased EFB.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Z textures 87
The texture input to the last active TEV stage is used as the Z texture, so the application must be careful to
arrange the TEV equation so the Z texture is output by this stage. When Z texturing is enabled, color is
output from the last active TEV stage, but the texture input to the last stage is not available (because it is
used for the Z texture).

Figure 41 - Z texture block diagram

The Z texture can either replace or offset the rasterized Z of the polygon. Normally, each pixel’s Z in a quad
is computed by adding Z slopes to a reference Z computed at the center of the quad. When Z texture is
enabled, the Z texels will offset the reference Z (i.e., the Z slopes will not be added, and thus the computed
Z accuracy will be per-quad, not per-pixel). In addition, a constant bias can be added to the result. Finally,
if Z buffering is enabled, the resulting Z is compared with the EFB current Z. The pipeline must be config-
ured to Z buffer after texture lookup when using Z textures. The Z-texture adders do not clamp, so the pro-
grammer must make sure that there is no overflow.

Code 52 - GXSetZTexture

void GXSetZTexture(
 GXZTexOps op,
 GXTexFmt fmt,
 u32 bias);

The fmt argument above can be one of the following:

• GX_TF_Z8

• GX_TF_Z16

• GX_TF_Z24X8

2 3

0 1

2 3

0 1

Rasterized Z
(reference Z at
the center of the

quad)

Z Texture (8-bit,
16-bit, or 24-bit)

+
+

+
+

0

Replace/Add

+
+

+
+

Bias

Z0

Z1

Z3

Z2

To
 D

ep
th

 B
uf

fe
r C

om
pa

re
s

© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

88 Graphics Library (GX)
8.11 Texture performance
This section documents peak texture performance assuming a 200 MHz graphics processor clock speed.

Note: 32-bit textures filter bilinearly at 800Mpixels/second, and trilinearly at 400Mpixels/second. Expect
less than 15% degradation for properly sampled cached textures.

Table 8 - Texture performance

Texture
Count Performance

1 800 million pixels/second

2 400 million pixels/second

3 267 million pixels/second

4 200 million pixels/second

5 160 million pixels/second

6 133 million pixels/second

7 114 million pixels/second

8 100 million pixels/second
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

89
9 Texture environment (TEV)

9.1 Description
The Texture Environment (TEV) combines per-vertex lighting, textures, and constant colors to form the
pixel color (before fogging and blending). The color and alpha components have independent TEV units
with independent controls. There is only one set of TEV color/alpha-combiners implemented in hardware.
To implement multi-texture, the TEV hardware is reused over multiple cycles, called TEV stages. Each
TEV stage has independent controls, and a maximum of 16 TEV stages are supported. A consecutive
number of TEV stages may be enabled in order to perform multi-texturing. The resulting pixel color is the
color output from the last active TEV stage.

A set of four input/output color registers are provided to store temporary results, pass results from one
stage to the next, or to supply user-defined constant colors. These color registers are shared among all
TEV stages. The last stage must send its output to the GX_TEVPREV register. (HW2 provides additional
registers; refer to "15 GX updates for HW2" on page 155.)

The alpha produced by the last TEV stage is input to an alpha-compare equation. The result of the alpha
compare can be used to conditionally mask color (and possibly Z) writes to the frame buffer.

Fog, if enabled, is applied to the pixel values output from the last active TEV stage. Blending operations
occur after fogging. (Fog and blending are described in later chapters.)

Figure 42 - TEV block diagram

9.2 Default texture pipeline configuration
By default, the texture pipeline is configured to look like the diagram below. Each texture coordinate
enabled for a vertex (using GXSetVtxDesc) is sent down the pipeline in the input order. Each coordinate
accesses a texture, and the resulting texel is fed to the corresponding TEV stage. Since only eight unique
textures are available, only eight TEV stages are configured this way; the remaining eight stages are initial-

alpha
compare

S
el

ec
t

S
el

ec
t

Se
le

ct
S

el
ec

t I
np

ut
s

A

B

C

D

GX_TEVREG0

GX_TEVREG1

GX_TEVREG2

GX_TEVPREV

st
or

e
ou

tp
ut

Te
v

O
p

Tex color

Rasterized
Color

Z texture

Color

Alpha
Compare
Pass/Fail
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

90 Graphics Library (GX)
ized with null texture and color inputs. The number of active TEV stages and the number of texture coordi-
nates that are generated must be set by the application (see GXSetNumTevStages and
GXSetNumTexGens). By default, only stage 0 produces an output. The default operation for stage 0 is
GX_REPLACE, meaning only the texture color is output (see "9.4 GXSetTevOp" on page 90).

Figure 43 - Default texture pipeline

The texture pipeline is very configurable. The user can override this simple default configuration as
described in the following sections.

9.3 Number of active TEV stages
To program the number of active TEV stages, use:

Code 53 - GXSetTevStages

GXSetNumTevStages(u8 stages);

There must always be at least one TEV stage enabled. TEV stages are enabled consecutively. A maxi-
mum of 16 TEV stages may be enabled.

9.4 GXSetTevOp
We provide the function GXSetTevOp to simplify initial programming demos. It determines the color pro-
cessing that occurs at the specified TEV stage. This function calls GXSetTevColorIn,
GXSetTevAlphaIn, GXSetTevColorOp, and GXSetTevAlphaOp (described later).

Code 54 - GXSetTevOp

GXSetTevOp(GXTevStageID stage, GXTevMode mode);

GX_TEXMAP0

GX_TEVSTAGE0

Tex Coord 0

COLOR0A0

GX_TEXMAP1

GX_TEVSTAGE1

Tex Coord 1

COLOR0A0

GX_TEXMAP2

GX_TEVSTAGE2

Tex Coord 2

COLOR0A0

GX_TEVSTAGE8

GX_TEVSTAGE15

GX_TEXMAP7

GX_TEVSTAGE7

Tex Coord 7

COLOR0A0

X
X

X
X

X

X

X

X

X

Output
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Color/alpha combine operations 91
The following table lists the GXTevMode types and the implied operation.

• For stage 0, subscript r is the rasterized color (from a lighting channel) for this stage.

• For other stages, subscript r is the previous stage output color.

• Subscript t is the texture value for this stage.

• Subscript v is the output color of this stage.

9.5 Color/alpha combine operations
As mentioned, GXSetTevOp is a simplifying function that sets the inputs and operation for a given TEV
stage. In order to use the full power of the TEV, you must set all of these parameters independently. First
we’ll describe the operation that takes place within a TEV stage, followed by how to set the various inputs
for the operation.

Table 9 - GXTevMode types

Name Color Channel Op Alpha Channel Op

GX_MODULATE Cv = Cr Ct Av = Ar At

GX_DECAL Cv = (1 - At) Cr + At Ct Av = Ar

GX_BLEND Cv = (1 - Ct) Cr + Ct Av = At Ar

GX_REPLACE Cv = Ct Av = At
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

92 Graphics Library (GX)
The figure below shows the operation that can be programmed in a given TEV stage. Remember that there
are two operations happening in a given cycle: one for the color components, and one for the alpha com-
ponent.

Figure 44 - TEV operations

Code 55 - GXSetTevColorOp, GXSetTevAlphaOp

GXSetTevColorOp(
GXTevStageID stage,
GXTevOp op,
GXTevBias bias,
GXTevScale scale,
GXBool clamp_enable,
GXTevRegID out_reg);
GXSetTevAlphaOp(
GXTevStageID stage,
GXTevOp op,
GXTevBias bias,
GXTevScale scale,
GXBool clamp_enable,
GXTevRegID out_reg);

Each TEV stage has its own set of operation controls. The color and alpha operations are set indepen-
dently using GXSetTevColorOp and GXSetTevAlphaOp. However, the clamp mode, set using
GXSetTevClampMode, applies to both the color and alpha combiners. (Refer to the next section for
details about the clamp mode.)

The TEV operation begins by performing a linear interpolation between A and B inputs, using C as the
interpolation factor. The inputs A, B, and C are always unsigned 8-bit values having a range [0 <= A,B,C <=
255]. The result of the interpolation can be optionally negated using op.

The input D and a bias value (0, +0.5, or –0.5) are then added to the result. The D input is a signed 10-bit
number having a range [-1024 <= D <= 1023]. The result of each TEV stage can be a signed 10-bit value,
so this input is provided for accumulating out-of-range values.

A constant scale (1, 2, 4, or 0.5) is then applied. The result is optionally clamped and written to an output
register. (See the next section for more details on clamping.)

For color operations, the same sequence is applied in parallel to the RGB color components. Alpha opera-
tions are independent of the color operations.

u8

s10

GX_TEVREG0

GX_TEVREG1

GX_TEVREG2

GX_TEVPREV
D ou

t_
re

g
(s

el
ec

t o
ne

)

Op +
Bias

S
ca

le

A

B

C

a*(1.0 - c) + b*c

s10

Op = optional negate

C
la

m
p

Scale = multiply by 1/2, 1, 2, or 4
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Color/alpha combine operations 93
The output registers are available as inputs for the next TEV stage. For example, GX_TEVREG0 corre-
sponds to GX_CC_C0 for the color TEV input, and GX_CA_A0 corresponds to the alpha TEV input. The out-
put registers can store a signed 10-bit number. The output register GX_TEVPREV is used by convention to
pass the results of one TEV stage to the next. GX_TEVPREV must be the output register of the last active
TEV stage.

HW2 adds new features to the TEV. Details may be found in "15 GX updates for HW2" on page 155.

9.5.1 Clamp modes
The clamp_enable parameter in GXSetTevAlphaOp and GXSetTevColorOp enables or disables clamp-
ing. The actual clamping mode is controlled by:

Code 56 - GXSetTevClampMode

GXSetTevClampMode(
 GXTevStageID stage,
 GXTevClampMode clamp_mode);

The clamp mode is shared by both alpha and color channels in the same TEV stage.

Table 10 - Correspondence between TEV input and output register names

TEV register
input color name

TEV register
input alpha name

TEV register
output name

GX_CC_C0 GX_CA_A0 GX_TEVREG0

GX_CC_C1 GX_CA_A1 GX_TEVREG1

GX_CC_C2 GX_CA_A2 GX_TEVREG2

GX_CC_CPREV GX_CA_APREV GX_TEVPREV
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

94 Graphics Library (GX)
The effect of clamp_enable and clamp_mode is shown in the table below:

Note: On HW2, the non-linear clamp modes have been removed (only the linear clamp modes are imple-
mented), and thus GXSetTevClampMode is not available. HW2 includes new comparison opera-
tions to replace the lost clamp modes. Refer to "15 GX updates for HW2" on page 155 for more
details.

Table 11 - Clamp enable and clamp mode

Clamp Enable
(independent

alpha and color
control)

Clamp Mode (shared alpha
and color control) Description

GX_FALSE GX_TC_LINEAR S = (R > 1023) ? 1023 : ((R < -1024) ? –1024)
: R)

GX_TRUE GX_TC_LINEAR S = (R > 255) ? 255 : ((R < 0) ? 0 : R)

GX_FALSE GX_TC_GE S = (R >= 0) ? 255 : 0

GX_TRUE GX_TC_GE S = (R >= 0) ? 0 : 255

GX_FALSE GX_TC_EQ S = (R == 0) ? 255 : 0

GX_TRUE GX_TC_EQ S = (R == 0) ? 0 : 255

GX_FALSE GX_TC_LE S = (R <= 0) ? 255 : 0

GX_TRUE GX_TC_LE S = (R <= 0) ? 0 : 255
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Color inputs 95
9.6 Color inputs
Figure 45 - TEV stage color inputs

Code 57 - GXSetTevColorIn

GXSetTevColorIn(
 GXTevStageID stage,
 GXTevColorArg a,
 GXTevColorArg b,
 GXTevColorArg c,
 GXTevColorArg d);

The TEV allows for many color input sources including constant (register) colors and alphas, texture color/
alpha, rasterized color/alpha (the result of per-vertex lighting), and a few useful constants. Notice that the
input controls are independent for each TEV stage.

The GX_CC_TEXRRR, GX_CC_TEXGGG, GX_CC_TEXBBB inputs can be used to copy one component of the
texture color to the other texture color channels. This feature is useful for dot product, intensity calculation,
and color space conversion.

Se
le

ct
S

el
ec

t
Se

le
ct

S
el

ec
t O

ne

u 8

s 1 0

A

B

C

D

G X S e t T e v C o l o r I n

G X _ C C _ C 0

G X _ C C _ C 1

G X _ C C _ C 2

G X _ C C _ C P R E V

G X _ C C _ A 0
G X _ C C _ A 1
G X _ C C _ A 2

G X _ C C _ A P R E V

G X _ C C _ T E X C

G X _ C C _ T E X A

G X _ C C _ R A S C

G X _ C C _ R A S A

G X _ C C _ O N E

G X _ C C _ H A L F

G X _ C C _ T E X R R R

G X _ C C _ T E X G G G

G X _ C C _ T E X B B B

G X _ C C _ Q U A R T E R

G X _ C C _ Z E R O
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

96 Graphics Library (GX)
The register colors can be programmed directly as constant colors, or used to store the results of TEV
operations. For example, GX_TEVREG0 corresponds to GX_CC_C0 for the color TEV input. Unlike the rest
of the TEV controls, the TEV registers are shared among all the TEV stages. The application must be care-
ful to partition the use of registers as input colors and output colors when designing a color-combining
equation. The following code sets register 1 to a constant 8-bit (per component) color and register 2 to a
constant 10-bit (per component) color:

Code 58 - Setting constant color

GXColor cyan = { 0x00, 0xff, 0xff, 0xff };
GXSetTevColor(GX_TEVREG1, cyan);

GXColorS10 coffset = { -128, -128, -128, 0 };
GXSetTevColorS10(GX_TEVREG2, coffset);

The default texture pipeline uses the GX_TEVPREV register to pass the output of one TEV stage to the
input of the next TEV stage. This is only a convention of the default configuration assumed by
GXSetTevOp. You can use GX_TEVPREV as a general-purpose register when programming your own TEV
equations. However, at least one register is required to pass results from one stage to the next when multi-
texturing. Note the GX_TEVPREV must be the output register for the last active TEV stage. This register is
wired directly to the fogging and blending functions.

Note also that the inputs A, B, and C are unsigned 8-bit values, but the register inputs GX_CC_C0-2 and
GX_CC_CPREV can be signed 10-bit values [-1024...+1023]. When one of these registers is selected for
the A, B, or C inputs, the least significant 8 bits of the register are used.

The rasterized color and alpha inputs are the result of per-vertex lighting on one of the lighting channels,
either GX_COLOR0A0 or GX_COLOR1A1. It is not possible to use the color from one lighting channel with
the alpha from the other lighting channel (for example GX_COLOR0 with GX_ALPHA1) into the same TEV
stage. In the default texture pipeline, GX_COLOR0A0 is directed to the first eight TEV stages. To change the
default, you must call GXSetTevOrder, described later in this chapter.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Alpha inputs 97
9.7 Alpha inputs
Figure 46 - TEV stage alpha inputs

Each TEV stage combines alpha channels independently of color channels. There a fewer alpha inputs
than color inputs, and there are no color channels available in the alpha combiner.

Code 59 - GXSetTevAlphaIn

void GXSetTevAlphaIn(
 GXTevStageID stage,
 GXTevAlphaArg a,
 GXTevAlphaArg b,
 GXTevAlphaArg c,
 GXTevAlphaArg d);

Note: The inputs A, B, and C are unsigned 8-bit values, but the register inputs GX_CA_A0-2 and
GX_CA_APREV can be signed 10-bit values [-1024...+1023]. When one of these registers is
selected by the A, B, or C inputs, the least significant 8 bits of the register are used.

9.8 Example equations
Equation 22 - Pass texture color

Code 60 - Pass texture color

GXSetTevColorIn(GXSetTevColorOp(
 GX_TEVSTAGE0, GX_TEVSTAGE0,
 GX_CC_ZERO, // a GX_TEV_ADD, // op
 GX_CC_ZERO, // b GX_TB_ZERO, // bias
 GX_CC_ZERO, // c GX_CS_SCALE_1, // scale
 GX_CC_TEXC); // d GX_ENABLE, // clamp 0-255
 GX_TEVPREV); // output reg

G X _ C A _ A 0

G X _ C A _ A 1

G X _ C A _ A 2

G X _ C A _ A P R E V

G X _ C A _ T E X A

G X _ C A _ R A S A

G X _ C A _ O N E

G X _ C A _ Z E R O
Se

le
ct

Se
le

ct
Se

le
ct

Se
le

ct
 O

ne

u 8

s 1 0

A

B

C

D

G X S e t T e v A l p h a I n
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

98 Graphics Library (GX)
Equation 23 - Modulate

Code 61 - Modulate

GXSetTevColorIn(GXSetTevColorOp(
 GX_TEVSTAGE0, GX_TEVSTAGE0,
 GX_CC_ZERO, // a GX_TEV_ADD, // op
 GX_CC_TEXC, // b GX_TB_ZERO, // bias
 GX_CC_RASC, // c GX_CS_SCALE_1, // scale
 GX_CC_ZERO); // d GX_ENABLE, // clamp 0-255
 GX_TEVPREV); // output reg

Equation 24 - Modulate 2X

Code 62 - Modulate 2X

GXSetTevColorIn(GXSetTevColorOp(
 GX_TEVSTAGE0, GX_TEVSTAGE0,
 GX_CC_ZERO, // a GX_TEV_ADD, // op
 GX_CC_TEXC, // b GX_TB_ZERO, // bias
 GX_CC_RASC, // c GX_CS_SCALE_2, // scale
 GX_CC_ZERO); // d GX_ENABLE, // clamp 0-255
 GX_TEVPREV); // output reg

Equation 25 - Add

Code 63 - Add

GXSetTevColorIn(GXSetTevColorOp(
 GX_TEVSTAGE0, GX_TEVSTAGE0,
 GX_CC_TEXC, // a GX_TEV_ADD, // op
 GX_CC_ZERO, // b GX_TB_ZERO, // bias
 GX_CC_ZERO, // c GX_CS_SCALE_1, // scale
 GX_CC_RASC); // d GX_ENABLE, // clamp 0-255
 GX_TEVPREV); // output reg

Equation 26 - Subtract

Code 64 - Subtract

GXSetTevColorIn(GXSetTevColorOp(
 GX_TEVSTAGE0, GX_TEVSTAGE0,
 GX_CC_RASC, // a GX_TEV_SUB, // op
 GX_CC_ZERO, // b GX_TB_ZERO, // bias
 GX_CC_ZERO, // c GX_CS_SCALE_1, // scale
 GX_CC_TEXC); // d GX_ENABLE, // clamp 0-255
 GX_TEVPREV); // output reg
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Alpha compare function 99
Equation 27 - Blend

Code 65 - Blend

GXSetTevColorIn(GXSetTevColorOp(
 GX_TEVSTAGE0, GX_TEVSTAGE0,
 GX_CC_TEXC, // a GX_TEV_ADD, // op
 GX_CC_RASC, // b GX_TB_ZERO, // bias
 GX_CC_TEXA, // c GX_CS_SCALE_1, // scale
 GX_CC_ZERO); // d GX_ENABLE, // clamp 0-255
 GX_TEVPREV); // output reg

9.9 Alpha compare function
You can apply the alpha compare operation to the alpha output from the last active TEV stage.

Code 66 - GXSetAlphaCompare

GXSetAlphaCompare(
 GXCompare comp0,
 u8 ref0,
 GXAlphaOp op,
 GXCompare comp1,
 u8 ref1);

The alpha compare operation actually consists of two separate compares, the results of which can be com-
bined using several logical operations.

Equation 28 - Alpha compare

For example, the following compare is possible:

Equation 29 - Sample alpha compare

The result of the alpha compare is a Boolean condition, true or false. The result of the alpha compare is
used to conditionally write the pixel color (and possibly Z) to the frame buffer.

The following compare operations are possible: never, less, less or equal, equal, not equal, greater,
greater or equal, always. The following combine operations are possible: and, or, exclusive-or, exclusive-
nor.

The effect of the alpha compare on the Z buffer depends on whether Z buffering occurs before or after tex-
ture lookup (see GXSetZCompLoc). If Z buffering occurs before texture lookup, then the Z write condition
is determined only by the Z compare. If Z buffering occurs after texture lookup, then the alpha compare
result and the Z compare result are logically ANDed to determine whether the color and Z are written to the
frame buffer. In general, if alpha compare is enabled, Z buffering should occur after texture lookup.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

100 Graphics Library (GX)
9.10 Z textures
Z textures are always looked up in the last TEV stage. The texture input of the last active TEV stage is con-
nected directly to the Z buffer logic; therefore, it is not possible to apply TEV operations to the Z texture.
The color is still output from the last TEV stage when Z textures are enabled, but the texture input of the
last stage is occupied by the Z texture so it cannot be used as a color source. However, all other color
inputs and all TEV operations of the last stage can be used. The alpha side of the TEV stage is not
affected by Z textures.

Refer to "8 Texture mapping" on page 57 for information on using Z textures. Refer to the Advanced Ren-
dering section for information on applications of Z textures.

9.11 Texture pipeline configuration
Each TEV stage requires:

• A texture map (GXTexMapID).

• A texture coordinate (GXTexCoordID) to use for the texture map.

• A color channel (GX_COLOR0A0 or GX_COLOR1A1) to rasterize.

• Modes and controls for the TEV stage itself.

The first three items are supplied using the following function:

Code 67 - GXSetTevOrder

GXSetTevOrder(
 GXTevStageID stage,
 GXTexCoordID coord,
 GXTexMapID map,
 GXChannelID color);

Let’s take each parameter in turn. The stage parameter is the TEV stage that you are configuring. The
coord parameter is the name of the texture coordinate used to look up the texture. The coord is generated
according to the function GXSetTexCoordGen. The map parameter is the name of the texture to use. If no
coord or map is to be used in this stage, they should be set to GX_TEXCOORD_NULL and
GX_TEXMAP_NULL, respectively. This map ID is associated with a texture using the GXLoadTexObj func-
tion. The color parameter is used to name the output color channel of the vertex lighting hardware. The GP
can only rasterize one color channel per clock, so you must choose whether to rasterize GX_COLOR0A0 or
GX_COLOR1A1 for this TEV stage.

You can think of the GXSetTevOrder function as a switchboard with which you can connect all the inter-
ested parties together. Similarly, the function GXSetTexCoordGen can be seen as a switchboard that con-
nects and transforms input vertex data to texture coordinates.

Note: While only eight texmaps and eight texcoords may be specified, up to 16 different texture lookups
can be performed. However, since texture coordinates are scaled based on the size of the associ-
ated texture map, you can only re-use or “broadcast” a texture coordinate to texture maps that
have the same size. Each TEV stage will perform its own texture lookup based upon all of its set-
tings.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Texture pipeline configuration 101
The following diagram shows the relationships between different parts of the texture pipeline and the func-
tions that control them and their associations.

Figure 47 - Texture pipeline control

GXInit sets the default texture coordinate generation capability. This function configures texture coordi-
nate generation to copy each input texture coordinate directly to an output texture coordinate using an
identity matrix. GXInit sets the number of color channels to 0 (GXSetNumChans).

Once you understand the default configuration, you can choose to override the texture coordinate genera-
tion using GXSetTexCoordGen, or the TEV wiring using GXSetTevOrder, or both.

Note: GXSetTevOrder determines which texture and rasterized color inputs are available to each TEV
stage, while GXSetTevColorIn and GXSetTevAlphaIn determine how the various inputs plug
into the TEV operation for each stage. Also, GXSetTevColorOp/GXSetTevAlphaOp determine
how the stages connect together.

GXSetTexCoordGen

GXSetTevOrder

G
X

S
et

V
tx

D
es

c

G
X

Lo
ad

Te
xO

bj

GX_TEXMAP1

GX_TEXMAP7

G
X

S
et

C
ha

nC
trl

GX_COLOR0A0

GX_COLOR1A1

Vertex Data

GXSetTev*In
GXSetTev*Op

GXSetTevColor
GXSetTevClampMode
GXSetAlphaCompare

GXSetNumTexGens

GXSetNumTevStages

GXSetNumChans

GX_VA_POS

GX_VA_TEX7

GX_VA_TEX2

GX_VA_TEX3

GX_VA_TEX4

GX_VA_TEX5

GX_VA_TEX6

GX_VA_CLR1

GX_TEVSTAGE0

GX_CC_TEXC/A

GX_CC_RASC/A
GX_TEXCOORD0

GX_TEXCOORD1

GX_TEXCOORD2

GX_TEXCOORD3

GX_TEXCOORD4

GX_TEXCOORD5

GX_TEXCOORD6

GX_TEXCOORD7

XFORMGX_VA_NRM

GX_VA_CLR0 Lighting

GX_VA_TEX0 XFORM

GX_VA_TEX1 XFORM

GX_TEXMAP0
GX_TEVSTAGE15

GX_CC_TEXC/A

GX_CC_RASC/A

GX_TEVSTAGE1

GX_CC_TEXC/A

GX_CC_RASC/A
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

102 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

103
10 Indirect texture mapping
The Graphics Processor has a powerful indirect texture feature. It allows the colors looked up from one
(indirect) texture lookup to be transformed into offsets that are then added to the texture coordinates for
another (regular) texture lookup. Various operations are possible when combining the output of the indirect
stage with the coordinates for the regular stage.

Figure 48 - Indirect texture operation

Indirect textures have several possible applications:

• Texture warping.

• Texture tile maps.

• Pseudo-3D textures.

• Environment-mapped bump mapping.

Using indirect textures for texture warping effects is the simplest application of the indirect feature. In this
case, the indirect texture is used to stretch or otherwise distort the surface texture. You can achieve a
dynamic distortion effect by swapping indirect maps (or by modifying the indirect map or coordinates). You
may apply this effect to a given surface within a scene, or you can take this one step further and apply the
effect to the entire scene. In the latter case, the scene is first rendered normally and then copied to a tex-
ture map. You then draw a big rectangle that can be mapped to the screen using an indirect texture. Tex-
ture warping allows for shimmering effects, special lens effects, and various psychedelic effects.

The indirect feature also lets you draw texture tile maps. In this case, one texture map holds the base defi-
nition for a variety of tiles. An indirect texture map is then used to place specific tiles in specific locations
over a 2D surface. Normally, this effect is accomplished without indirect textures by drawing a polygon for
each desired tile. With indirect textures, only one polygon need be drawn.

Figure 49 - Tiled texture mapping

Indirect
Texture
Lookup

Regular
Texture
Lookup

OpTex. Coord

Tex. Map

Tex. Coord

Tex. Map
TEV

Color

Color

Texture
Lookup

Tex. Coord

Tex. Map
TEV

Color

Normal Texture Operation Indirect Texture Operation

S1
T1

S0
T0

Tile Selection

2 0 1 0 1 0 3 0

1 1 0 0 0 0 1 1

1 1 0 0

2 1 1 0 1 0 3 1

0 0 1 1

Scale

Wrap Addition

Op

Tile Definition
Result

0 1 2 3

0

1

© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

104 Graphics Library (GX)
Tile mapping can be extended to become a pseudo-3D texture effect. Consider all the tiles to be part of a
stack. Rather than drawing just a single tile layer from the stack, you can select two adjacent layers and
blend between them. You can use this technique to cover a large surface with non-repeating patterns that
blend together smoothly. You might imagine covering a beach with such a texture, where the layers vary in
appearance from fine sand to small pebbles to larger rocks.

Figure 50 - Pseudo-3D textures

Environment-mapped bump mapping (EMBM) is another use of indirect textures. Regular emboss bump
mapping considers only the interaction between the bump map and a single diffuse light source. With envi-
ronment-mapped bump mapping, you use an indirect bump texture to offset texture coordinates generated
via surface normals. The perturbed normals are then used to look up an environment texture. The environ-
ment texture may contain complicated lighting effects, or it may be a reflection map of the environment.
(One caveat is that the environment map is viewpoint-dependent; i.e., it must be regenerated whenever
the viewpoint changes.) There are two EMBM methods:

• The normal perturbations are modeled with respect to a flat surface (dS, dT), and during runtime they
are transformed onto arbitrary surfaces. This method requires three TEV stages plus one indirect
stage to calculate the modified texture coordinates.

• The normal perturbations are modeled in 3D (dX, dY, dZ), and during runtime they are matched with
specific surfaces and transformed into eye space. This method requires only one TEV stage plus one
indirect stage to compute.

S1
T1

S0
T0

Layer Select

3.5

Layer Definitions
Results

5.4 7.3

4.3 6.6 8.5

4.9 7.2 9.9

0 3 6 9

1 4 7 10

2 5 8 11

3 6 9 12

3.5 5.4 7.3

4.3 6.6 8.5

4.9 7.2 9.9

Op

4.9 = select layers 4 and 5
 use blend factor 0.9

4.9 = 0.1 * (layer 4 definition) +
0.9 * (layer 5 definition)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Setting up indirect texture stages 105
10.1 Setting up indirect texture stages
In the figure below, we illustrate the texture hardware as described in the previous chapters. For each TEV
stage, you may assign a texcoord and a texture map to be looked up. Texture lookup and processing
occurs in each TEV stage.

Figure 51 - Regular texture functional diagram

We now describe the indirect texture hardware in more detail. As mentioned above, an indirect lookup con-
sists of an indirect lookup stage, after which the results are combined with the regular texture coordinates
for another (regular) lookup stage. There can be up to four different indirect lookup stages. The results
from any indirect lookup may be used in any TEV stage to modify a regular texture lookup. Thus there can
be up to 16 modified regular lookups.

Note: The total number of texture maps available remains at 8. In addition, any texture map that is desig-
nated as being used for an indirect lookup cannot also be used as a target for a regular lookup
(and vice versa—a given texture map can be only one or the other).

Performance-wise, adding an indirect stage is like adding another TEV stage. It increases the time
required to process each quad (2x2 pixels) by an additional clock cycle.

GX_TEXCOORD's

GX_TEXMAP's

Texture
Lookup Parameters

TEV
Processing

Texture Lookups

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

GXSetTevOrder()
GXSetNumTevStages()
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

106 Graphics Library (GX)
In the figure below, we add in the indirect hardware as it has been described thus far.

Figure 52 - Regular and indirect texture functional diagram

The figure also shows some of the relevant functions. First is GXSetNumIndStages, which controls how
many indirect texture lookups there will be. For each indirect stage, you must specify a texture coordinate
and map. This is done using GXSetIndTexOrder:

Code 68 - GXSetIndTexOrder

void GXSetIndTexOrder(GXIndTexStageID stage,
 GXTexCoordID coord,
 GXTexMapID map);

As mentioned, a map that is assigned to an indirect stage in this way cannot also be assigned to a regular
TEV stage as well. A given map can only be indirect or regular.

On the other hand, a given texture coordinate can be shared by both an indirect lookup and a regular
lookup. If the indirect map is the same size as the regular map, then the sharing is straightforward. If the
sizes differ, there is still the possibility to share. If the regular map is larger than the indirect map, you may
scale it down by a power of two for use with the indirect lookup while still using the unscaled texture coor-
dinate for the regular lookup. This is set by the following call:

Code 69 - GXSetIndTexScale

void GXSetIndTexCoordScale(GXIndTexStageID indStage,
 GXIndTexScale scaleS,
 GXIndTexScale scaleT);

GX_TEXCOORD's

GX_TEXMAP's

Indirect
Lookup

Parameters

Indirect
Lookup
Results

Indirect Operation
Specs and Regular
Lookup Parameters

TEV
Processing

Texture Lookups

Texture Lookups

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3

0
1
2
3

GXSetTevOrder()

GXSetIndTexOrder()
GXSetTevIndirect()

GXSetNumIndStages()

GXSetNumTevStages()
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Basic indirect texture processing 107
The figure below shows an example for this case. The block labeled “Scale to Map 2 size” is the regular
texture coordinate scaling that the hardware does. The block labeled “Scale by 1/4” would happen as a
result of calling GXSetIndTexCoordScale with parameters specifying 1/4 scaling.

Figure 53 - Texture coordinate sharing example

If we share texture coordinates for this example and set the indirect scaling to 1, then the texture coordi-
nate would either wrap or clamp as it accesses the indirect texture. The behavior depends upon the set-
tings for the indirect map being looked up.

10.2 Basic indirect texture processing
We now begin to describe what is possible inside the “Op” block shown above, where the colors coming
from the indirect lookup are processed and combined with the regular texture coordinate. The figure below
shows some of the major components of the indirect texture processing block. More details will be shown
in a later section.

Figure 54 - Indirect texture processing, part 1

When the indirect looked-up color enters the processing box, the first thing that happens is a mapping of
the color components to the (s, t, u) texture offsets. As shown, red (R) is discarded, green (G) maps to u,
blue (B) maps to t, and alpha (A) maps to s.

Note: Some remapping may be done later through the use of the indirect matrix (described below). We
chose this initial mapping in order to make efficient use of IA8 texture maps.

Next, the texture offsets go through the format block. You may choose whether some or all of the bits of
each component are actually used; that is, specifically, you may choose whether the lower 3, 4, 5, or 8 bits
of each component are used. Normally, you will use all 8. (The reason for the partial choices is described in
"10.5.1 Texture tiling and pseudo-3D texturing" on page 111.)

Indirect
Texture
Lookup

Regular
Texture
Lookup

Op

Tex. Map 1

Tex. Coord

Tex. Map 2
TEV

Color

Color

Tex. Map 2 is 4x size of Tex. Map 1

Scale to
Map 2 size

Scale by
1/4

3(S8)

2(S17.7)
regular st
coords

3(U8)

indirect
lookup
color 2(S17.7)

2(S17.7)

scale

2(S17.7)
st (for modified
regular lookup)

format

%
wrap

+

bias

M v

a cb
d e f

R
UG
-

B T
A S Matrix
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

108 Graphics Library (GX)
Next, you can apply a bias. If 8 bits were chosen in the format block, then the bias is -128, allowing for
signed offsets. If a smaller number of bits was chosen in the format block, then the bias is +1. This is a spe-
cial case that will also be explained in section 10.6.

The next operation is a matrix-vector multiply. You may configure up to three different static matrices and
choose which one to use for a given indirect texture operation. The components of the matrix are in the
range [-1 … +0.999] (a sign bit plus 10 bits of mantissa). As shown, the matrix has 2 rows and 3 columns,
and it appears on the left side of the multiply. On the right side is a column vector consisting of the (s, t, u)
offsets. The matrix may be used for rotation, scaling, and remapping of the offsets.

A scale value is associated with each static matrix. You may choose a scale value by specifying an expo-
nent of 2 in the range of [-17 … +46]. This scale value can be used to stretch the offsets over the size of
the regular texture map that will be associated with this indirect operation. You can also think of the scale
as the fixed-point exponent for the matrix values. Since a value equal to +1.0 cannot be stored in the
matrix, you can store 0.5 and use an exponent of 1 greater than the desired value in order to compensate.

You can optionally wrap the regular texture coordinate used with this lookup operation. You may specify a
wrap value of 0, 16, 32, 64, 128, 256, or none. Using 0 effectively zeroes out the regular texture coordinate
values.

Once all of the above processing has taken place, the offsets are added to the regular texture coordinates.
This becomes the effective texture coordinate that will be used in the texture lookup for the associated TEV
stage.

10.3 Basic indirect texture functions
We now describe more indirect texture functions. Use this function to set an indirect matrix and scale
value:

Code 70 - GXSetIndTexMtx

void GXSetIndTexMtx(GXIndTexMtxID mtx_id,
 f32 offset[2][3],
 s8 scale_exp);

As mentioned above, there are three indirect matrices, and mtx_id specifies which one to set. The offset
values must be in the range of [-1 … +0.999] (sign plus 10-bit mantissa), and scale_exp must be in the
range of [-17 … +46].

The following group of functions will set up the indirect hardware to enable a particular special effect.

Note: These functions only set the indirect hardware, and you must still set up the TEV, texture maps,
texgens, and other parts of the system in order to achieve the desired effect.

10.3.1 Texture warping
Code 71 - GXSetTevIndWarp

GXSetTevIndWarp(
 GXTevStageID tevStage, // Name of TEV stage being modified
 GXIndTexStageID indStage, // The indirect stage that specifies the warp map
 GXBool signedOffsets, // True for s8 offsets, false for u8 offsets
 GXBool replaceMode, // True to replace, false to modify regular coords
 GXIndTexMtxID matrixSel); // Which indirect matrix and scale to use
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Basic indirect texture functions 109
This function provides the ability to warp a regular texture lookup. The indirect map should contain 8-bit off-
sets. The signedOffsets parameter controls whether or not a bias of -128 is applied to the offsets. The
replaceMode parameter controls whether the offsets completely replace the regular texture coordinates
(GX_TRUE), or if they merely offset them (GX_FALSE). In effect, this selects a zero wrap value or a wrap
value of none. The matrixSel parameter chooses which of the available indirect matrices (and associated
scale values) to use.

The SDK graphics demo ind-warp shows one way to use this function.

10.3.2 Environment-mapped bump-mapping (dX, dY, dZ)
Code 72 - GXSetTevIndBumpXYZ

GXSetTevIndBumpXYZ(
GXTevStageID tevStage, // Name of TEV stage being modified
GXIndTexStageID indStage, // The indirect stage that specifies the bump map
GXIndTexMtxID matrixSel); // Which matrix/scale slot to use

GXSetTevIndBumpXYZ sets up an environment-mapped bump-mapped (dX, dY, dZ) texture lookup. This
is basically a perturbed lookup into a spherical reflection map. As an indirect operation, this is just a warp
with signed offsets. The bump map must contain biased normal offsets in 3D model space. It must be an
RGBA texture with dX in A, dY in B, and dZ in G. You must load the indirect matrix with a transform for nor-
mals that goes from model space to eye space. The scale value must contain the size of the reflection map
divided by 2 (and thus the reflection map must be a square power of 2 size). You must set up a normal-
based texgen for the regular texture coordinate. Alternately, you may avoid sending vertex normals by put-
ting normals (not just offsets) in the texture map. See the Advanced Rendering section in this guide for
more details on bump mapping. Also, refer to the demo ind-bump-xyz.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

110 Graphics Library (GX)
10.4 Advanced indirect texture processing
Before moving on to the next indirect functions, let’s examine more details in the indirect texture process-
ing block. These details are illustrated in the following figure, which builds upon "Figure 54 - Indirect texture
processing, part 1" on page 107.

Figure 55 - Indirect texture processing, part 2

The figure above shows four additional features of the indirect processing hardware:

• You may select a “bump alpha” value to be extracted from the indirect lookup color.

• A dynamic matrix may be created, based upon the incoming regular texture coordinates.

• You may select whether the original or modified texture coordinate is used to compute texture LOD.

• You may feed the texture coordinate calculated from one stage as an additive input to the next.

10.4.1 Selecting “bump alpha”
You may specify that certain bits from the indirect looked-up color be available as “bump alpha.” Which bits
are used depends upon the format selected for the indirect offsets. If you chose to use 3, 4, or 5 bits from
the colors as offsets, then the remaining 5, 4, or 3 bits are available for selection as bump alpha. If you
chose the 8-bit format, then the upper 5 bits may be duplicated as bump alpha. In any case, you choose
whether to extract the bits from the s, t, or u component; the resulting bits are left-aligned in the bump-
alpha 8-bit field. Bump alpha is available as a TEV-stage color input (by using GXSetTevOrder). You may
select the plain bump alpha, or a “normalized” bump alpha (i.e., a bump alpha multiplied by a factor of 255/
248).

Note: There is a restriction on this feature: bump alpha is not available for TEV stage 0.

3(S8)

2(S17.7)
regular st
coords

3(U8)

indirect
lookup
color 2(S17.7)

2(S17.7)

scale

2(S17.7)

2(S17.7) st (for LOD)

st (for modified
regular lookup)

format

%
wrap

a cb
d e f

+

bias

0

bump
alpha

bs

bt

bu

1(U8) (upper 5 bits only)R
UG
-

B T
A S

M v

bump alpha select

matrix select

LOD
select

previous stage
feedback select
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Advanced indirect functions 111
10.4.2 Dynamic matrices
There are more choices for the indirect matrix. You may select from the three static matrices, two types of
dynamic matrices, or a matrix of all zeros. For each matrix selection (except the zero matrix), there is a cor-
responding scale selection as well. If you use a dynamic matrix, you may choose one of the three scale
values associated with the static matrices. Dynamic matrices are set based upon the incoming regular s/t
coordinate values:

Equation 30 - Dynamic indirect matrices

10.4.3 Selecting texture coordinates for texture LOD
You may select to use the original (unmodified) or the modified texture coordinates for the MIPMAP LOD
computation. When doing texture tiling (described below), you should use the unmodified texture coordi-
nates for this purpose. In most other cases, you should use the modified coordinates.

10.4.4 Adding texture coordinates from previous TEV stages
You may choose to add in the texture coordinate computed in the previous TEV stage. This allows even
more complicated expressions to be built up over multiple stages. It also allows a complicated result to be
reused for more than one lookup.

10.5 Advanced indirect functions
We now describe functions that take advantage of the features mentioned in "10.4.4 Adding texture coordi-
nates from previous TEV stages" on page 111.

10.5.1 Texture tiling and pseudo-3D texturing
Code 73 - GXSetTevIndTile

GXSetTevIndTile(
 GXTevStageID tevStage, // Name of TEV stage being modified
 GXIndTexStageID indStage, // The indirect stage that specifies the tile map
 u16 tileSizeS, // Size of tile in S dimension
 u16 tileSizeT, // Size of tile in T dimension
 u16 tileSpacingS, // Tile spacing in S dimension
 u16 tileSpacingT, // Tile spacing in T dimension
 GXIndTexFormat format, // Format of indirect offsets
 GXIndTexMtxID matrixSel, // Which indirect matrix slot to use
 GXIndTexBiasSel biasSel, // For pseudo-3D, selects tile-stacking direction
 GXIndTexAlphaSel alphaSel); // For pseudo-3D, selects bump alpha

This function specifies texture tiling or pseudo-3D texture lookup. You specify the tile size and spacing sep-
arately. Using a spacing different than the tile size allows borders for mipmapping purposes. Depending
upon the height of the mipmap stack, texels outside of the tile area may be included in the filtering calcula-
tions for mipmapping. This function will set up the matrix values and scale value appropriately based upon
the given inputs; you need only to specify which matrix slot to use. The biasSel and alphaSel are used only
for pseudo-3D lookups (see below). You set these to GX_ITB_NONE and GX_ITBA_OFF, respectively, for
normal 2D tiling.

Note: Texture tiling can take advantage of the same texture coordinate for use with the indirect map and
the regular map. There is a complication, however, since the desired scale values for the regular
texture coordinates are not directly related to the size of the regular map, which contains the tile
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

112 Graphics Library (GX)
definitions (refer back to "Figure 49 - Tiled texture mapping" on page 103). Normally, GX will set
the texture coordinate’s scale size to the size of the map being looked up, with preference for the
regular map size if a texture coordinate is being shared. Since you need to use a different scale
altogether with texture tiling, you must use this function:

Code 74 - GXSetTexCoordScaleManually

GXSetTexCoordScaleManually(
 GXTexCoordID texCoord, // Name of the texcoord being affected
 GXBool enable, // GX_TRUE = manual scaling; GX_FALSE = automatic
 u16 ss, // Manual scale value for S dimension
 u16 ts); // Manual scale value for T dimension

Once GXSetTexCoordScaleManually has been called with enable set to GX_TRUE, the given texture
coordinate scale values are fixed until the function is called again. If the function is called with enable set to
GX_FALSE, then automatic texture coordinate scaling takes over once again for that texcoord.

Note: When you are manually scaling, you should also call GXSetTexCoordBias. The bias is normally
set automatically by the GX API, but when a texture coordinate is being scaled manually, the bias
is no longer modified by GX and will be stale from the last time it was set.

For texture tiling, the desired texture coordinate scale is the tile size multiplied by the size of the indirect
map. You then use GXSetIndTexCoordScale to divide out the tile size for use in accessing the indirect
map. For an example of texture tiling, refer to the demo ind-tile-test.

In order to support pseudo-3D texture lookup, you must call GXSetTevIndTile for two adjacent TEV
stages. The first stage resembles a normal 2D tiling specification. For the second stage, you specify a bias
select and alpha select. The bias is used to select the tile-stacking direction. You use GX_ITB_S when the
next tile is offset in s, and GX_ITB_T when the next tile is offset in t. You then choose a bump alpha in
order to blend between the tile from the first lookup and the tile from the second lookup.

Note: You cannot use the 8-bit format for pseudo-3D. Instead, you must use the 3-, 4-, or 5-bit format.
These formats use a bias value of +1 instead of -128. The +1 bias is used to get the “next” tile in
the second stage. Refer to the demo ind-pseudo-3d to see one way to use this feature.

10.5.2 Environment-mapped bump-mapping (dS, dT)
Code 75 - GXSetTevIndBumpST

GXSetTevIndBumpST(
 GXTevStageID tevStage, // Name of first TEV stage to insert EMBM lookup
 GXIndTexStageID indStage, // The indirect stage that specifies the bump map
 GXIndTexMtxID matrixSel); // Which scale/matrix slot to use

This function sets up an environment-mapped, bump-mapped (dS, dT) texture lookup. Similar to
GXSetTevIndBumpXYZ, this sets up a perturbed lookup into a spherical reflection map. The difference is
that the bump map in this case contains deltas for (s, t). Such a lookup requires three TEV stages to com-
pute the offset texture coordinates. The resulting texture coordinate will be available two stages after the
one specified in the call. This function makes use of the dynamic matrices in order to transform the (s, t)
offsets to be relative to the incoming regular (s, t) (which come from the object normals).

You must set up the desired offset scale value using GXSetIndTexMtx. The scale value must contain the
size of the reflection map divided by 2 (and thus the reflection map must be a square power of 2 in size).

Note: No static matrix is actually used in the texture coordinate computation. Only dynamic matrices and
the scale value are used.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Advanced indirect functions 113
The geometry associated with this lookup must include normals, binormals, and tangents. You must set up
three normal-based texgens for the regular texture coordinates. The binormal texgen goes to the first TEV
stage, the tangent texgen goes to the second stage, and the normal texgen goes to the third stage. An
additional texgen is used for the indirect coordinate. You should use an IA8 texture format for the bump
map, with s offsets in alpha (A) and t offsets in intensity (I). You must set up the first two TEV stages used
so that they do not actually look up the textures (by using GX_TEX_DISABLE).

Refer to the demo ind-bump-st to see this kind of environment-mapped bump-mapping in action. Also
refer to the Advanced Rendering section for more details on bump mapping.

Having used three TEV stages to compute the texture coordinate for an EMBM (dS, dT) lookup, you can
use the result to do more than one lookup. In order to perform successive lookups without taking three
stages to compute each one, use the texture coordinate feedback feature. You may call
GXSetTevIndRepeat to set this up:

Code 76 - GXSetTevIndRepeat

GXSetTevIndRepeat(
 GXTevStageID tevStage); // Name of TEV stage being modified

This function allows you to use the texture coordinates computed in the previous TEV stage for the named
TEV stage. It is typically used only after GXSetTevIndBumpST.

10.5.3 General indirect texturing
The functions described so far implement the most obvious uses of the indirect texture hardware. There is
one more function available to set the indirect texture hardware directly, in case developers think of addi-
tional uses for the hardware.

Code 77 - GXSetTevIndirect

GXSetTevIndirect(
 GXTevStageID tevStage; // TEV stage name
 GXIndTexStageID indStage; // the indirect stage to be used with this TEV stage
 GXIndTexFormat format; // format of the indirect texture offsets
 GXIndTexBiasSel biasSel; // Selects which offsets (S, T) receive a bias
 GXIndTexMtxID matrixSel; // Selects which indirect matrix and scale to use
 GXIndTexWrap wrapS; // Wrap value of regular S coordinate
 GXIndTexWrap wrapT; // Wrap value of regular T coordinate
 GXBool addPrev; // Add output from previous stage to texture coords?
 GXBool utcLOD; // Use unmodified texture coordinates for LOD calc?
 GXIndTexAlphaSel alphaSel); // Selects indirect texture alpha output

GXSetTevIndirect allows you to set the various parameters for a given indirect operation manually.

Note: The indirect texture coordinate processing block is used for all TEV stages. If you do not want to
perform a modified lookup, select the zero texture matrix and turn off wrapping, feedback, and
bump alpha. We provide a convenience function to do this:

Code 78 - GXSetTevDirect

GXSetTevDirect(
GXTevStageID tevStage); // TEV stage name
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

114 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

115
11 Fog, Z-compare, blending, and dithering
The final pixel output operations include fog, Z-compare, blending, and dithering. These operations are the
final steps of the pixel pipeline before a pixel is either written to the frame buffer or discarded. Fog allows
pixel values to be blended with the fog color based upon the distance from the viewer. The Z-compare
operation determines whether or not rasterized pixels will be written to the frame buffer based upon a Z
value comparison. The blending operation allows the rasterized pixel color to be mixed with the color exist-
ing in the frame buffer. Logic operations are also possible in the blender. Dithering takes place last.

11.1 Fog
Fog, if enabled, blends a constant fog color with the pixel color output from the last active Texture Environ-
ment (TEV) stage. The percentage of fog color blended depends on the fog density, which is a function of
the distance from the viewpoint to a quad (2x2 pixels).

There are five possible fog density functions:

• Linear.

• Exponential.

• Exponential squared.

• Reverse exponential.

• Reverse exponential squared.

You may program a near and far Z for the fog function independent of the clipping near and far Z.

The eye-space Z used for fog computations does not represent the correct range unless the viewer is fac-
ing the same direction as the z-axis. The GP can compensate for this with a range adjustment factor based
upon the x position of the pixels being rendered. This boosts the eye-space Z value used for the fog com-
putation (the y direction is not compensated), effectively increasing the fog density towards the edges of
the screen in order to make the effect more realistic.

Figure 56 - Fog range adjustment

X axis

} Just using Z for range results in
increasing error as line of sight

moves away from Z axis

A range adjustment factor based upon
the X value compensates for this
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

116 Graphics Library (GX)
11.1.1 Fog curves
These curves show the fog density as a function of range with startz = 50 and endz = 100.

Figure 57 - Linear fog curve

Figure 58 - Exponential fog curve
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Fog 117
Figure 59 - Exponential squared fog curve

Figure 60 - Reverse exponential fog curve

Figure 61 - Reverse exponential squared fog curve
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

118 Graphics Library (GX)
11.1.2 Fog parameters
You can control fog by using the following function:

Code 79 - GXSetFog

void GXSetFog(GXFogType type,
 f32 startz,
 f32 endz,
 f32 nearz,
 f32 farz,
 GXColor color);

The parameters startz and endz control where the fog function starts and ends, respectively. Usually, the
endz value is set to the far plane Z. The nearz and farz are needed to convert the rasterized screen space
Z value into eye-space Z for fog computations. Color is the color of the pixel when the fog density is 1.0.

The horizontal fog range adjustment is turned off by default in GXInit. In order to use this feature, you
must call the following two functions:

Code 80 - Fog range adjustment functions

void GXInitFogAdjTable(
 GXFogAdjTable* table,
 u16 width,
 f32 projmtx[4][4]);

void GXSetFogRangeAdj(
 GXBool enable,
 u16 center,
 GXFogAdjTable* table);

The first function is used to compute the adjustment table. The user must provide the allocated space for
this table. The width parameter specifies the width of the viewport. The projmtx parameter is the projection
matrix that will be used to render into the viewport. This parameter is needed for the function to compute
the viewport’s horizontal extent in eye space.

Once the table has been computed, it can be passed to GXSetFogRangeAdj. The enable parameter indi-
cates whether horizontal fog range adjustment is enabled or not. The center parameter should be the x-
coordinate at the center of the viewport. The range adjust function is symmetric about center.

11.2 Z-compare
You may write to the frame buffer conditionally by comparing the Z value for the rasterized pixel against the
Z value for the pixel already in the frame buffer. This comparison may happen at one of two places within
the graphics pipeline: the comparison may take place before a pixel is textured, or it may take place after
texturing has been done (see "Figure 1 - Schematic of the GP" on page 10). Normally, the Z-compare
occurs before texturing because this typically enhances performance; that is, memory bandwidth is
reduced by not looking up textures for pixels that will not be visible. However, the alpha-compare logic is
tied together with the Z-compare logic, so using alpha-compare requires placing the Z-compare after tex-
turing. Using Z textures also requires that the Z-compare occur after texturing. The function
GXSetZCompLoc sets whether the Z-compare happens before or after texturing. The compare is set to
“before” in GXInit.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Z-compare 119
The function GXSetZMode is used to control the Z-compare:

Code 81 - GXSetZMode

void GXSetZMode(
 GXBool compare_enable,
 GXCompare func,
 GXBool update_enable);

The compare_enable parameter can be used to disable the Z-compare altogether. When compare_enable
is false, writes to the Z buffer are also disabled. The func parameter sets the comparison function (never,
less, less or equal, equal, not equal, greater or equal, greater, or always). The update_enable parameter
sets whether or not new Z values are written to the Z buffer when Z-compares are enabled.

11.2.1 Z buffer format
The Z buffer is 24 bits wide in non-antialiased mode, and 16 bits wide in antialiased mode. When using a
16-bit Z buffer, a number of different compressed formats are available to make better use of the limited
number of bits. The compression algorithm performs a type of reverse floating point encoding because the
properties of screen space Z necessitates clumping most of the resolution towards the high end of the
number scale, whereas conventional floating point notation clumps most of the resolution towards the low
end of the number scale.

The system supports various compression schemes, with selection being made based on the far-to-near
ratio. For orthographic projection or small far-near ratios, you can use a linear format; it just strips the lower
8 bits from the input Z. For medium far-near ratios, you can use a 14e2 format that has an effective resolu-
tion of 15 bits at the near plane and 17 bits at the far plane. For high far-near ratios, you can use a 13e3
format that has an effective resolution of 14 bits at the near plane and 20 bits at the far plane. A 12e4 for-
mat is also available.

The 16-bit formats available are listed below:

It is always best to use as little compression as possible (i.e., use as many mantissa bits in the Z format as
possible). You get less precision with higher compression. The “far” in the above text does not necessarily
refer to the far clipping plane. You should think of it as the farthest object you want correct occlusion for.

The Z buffer format is set using GXSetPixelFmt. This function affects both the color buffer format and the
Z buffer format. For information about color buffer formats, refer to "12 Video output" on page 125.

Note: Changing the frame buffer format requires flushing the pixel pipeline.

Table 12 - 16-bit Z buffer formats

Format name Description Use When

GX_ZC_LINEAR Linear far/near <= 2^16

GX_ZC_NEAR 14e2 far/near <= 2^18

GX_ZC_MID 13e3 far/near <= 2^20

GX_ZC_FAR 12e4 far/near <= 2^24
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

120 Graphics Library (GX)
11.3 Blending
The blending operation combines the pixel color (output from the TEV and fog operations), also called the
source color, with Embedded Frame Buffer (EFB) color, also called the destination color. The pixel’s alpha,
or source alpha, can always be used as a factor in the blending operation. In addition, if the EFB format is
GX_PF_RGBA6_Z24, then you can blend the source alpha channel with the EFB alpha, also called desti-
nation alpha.

When rendering non-antialiased images, four pixels per clock are blended. When rendering antialiased
images, six samples, or two pixels per clock, are blended.

You can set the main blending controls using:

Code 82 - GXSetBlendMode

void GXSetBlendMode(
 GXBlendMode type,
 GXBlendFactor src_factor,
 GXBlendFactor dst_factor,
 GXLogicOp op);

The type parameter selects between blending operations, GX_BM_BLEND, or logical operations,
GX_BM_LOGIC. Setting type to GX_BM_NONE writes the source pixel directly to the EFB. Call
GXSetColorUpdate and GXSetAlphaUpdate to enable the writing of the blending result to the EFB.

11.3.1 Blend equation
The blend equation is:

Equation 31 - Blending
pix_color = Clamp (src_factor x src_color + dst_factor x dst_color)

The RGB blenders are identical. The alpha blender differs in that a constant alpha can override the result
of the blend equation using GXSetDstAlpha.

The src_factor and dst_factor are both normalized. The normalization process adds the most significant bit
(MSB) of the factor to itself, thus 0 through 127 are unchanged and 128-255 will map to 129 to 256. The 8-
bit color is multiplied by the 9-bit factor and the result is rounded. The result of the two multiplies are added
and the sum is clamped to 255. This technique allows colors to be multiplied by 1.0 (255 = 1.0), preserving
the high end of the color range.

Note: HW2 adds a new blend function; refer to "15 GX updates for HW2" on page 155 for details.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Blending 121
11.3.2 Blending parameters
The following table lists the possible values of src_factor and dst_factor:

Table 13 - Blending parameters

Source or Destination Factor Red Green Blue Alpha

GX_BL_ZERO 0 0 0 0

GX_BL_ONE 0xff 0xff 0xff 0xff

GX_BL_SRCCLR Rs Gs Bs As

GX_BL_INVSRCCLR 0xff – Rs 0xff – Gs 0xff – Bs 0xff – As

GX_BL_DSTCLR Rd Gd Bd Ad

GX_BL_INVDSTCLR 0xff – Rd 0xff – Gd 0xff – Bd 0xff – Ad

GX_BL_SRCALPHA As As As As

GX_BL_INVSRCALPHA 0xff – As 0xff – As 0xff – As 0xff – As

GX_BL_DSTALPHA Ad Ad Ad Ad

GX_BL_INVDSTALPHA 0xff – Ad 0xff – Ad 0xff – Ad 0xff – Ad
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

122 Graphics Library (GX)
11.3.3 Logic operations
These logical operations are supported:

Logic operations and blend operations are mutually exclusive.

Table 14 - Logic operations

Logic Op Name Operation

GX_LO_CLEAR 0x00

GX_LO_SET 0xff

GX_LO_COPY Source

GX_LO_INVCOPY ~Source

GX_LO_NOOP Destination

GX_LO_INV ~Destination

GX_LO_AND Source & destination

GX_LO_NAND ~(Source & destination

GX_LO_OR Source | destination

GX_LO_NOR ~(Source | destination)

GX_LO_XOR Source ^ destination

GX_LO_EQUIV ~(Source ^ destination)

GX_LO_REVAND Source & ~destination

GX_LO_INVAND ~Source & destination

GX_LO_REVOR Source | ~destination

GX_LO_INVOR ~Source | destination
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Dithering 123
11.4 Dithering
The pixel can be dithered after blending when the pixel format is either GX_PF_RGBA6_Z24 or
GX_PF_RGB565_Z16. There is no performance penalty for turning on dithering. Each 8-bit color compo-
nent is scaled and normalized appropriately (see below) and the corresponding entry in the standard 4x4
Bayer matrix is added. The Bayer matrix is screen-aligned and repeated over the entire screen.

Equation 32 - Bayer matrix

The following equations compute scaling and normalizing for dithering:

Equation 33 - 5-bit dithering (ideal)

Equation 34 - 5-bit dithering (approximation actually used)

Equation 35 - 6-bit dithering (ideal)

Equation 36 - 6-bit dithering (approximation actually used)

You can enable dithering by calling the GXSetDither function. Dithering is enabled by default in GXInit.

Code 83 - GXSetDither

void GXSetDither(GXBool enable);
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

124 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

125
12 Video output
The Embedded Frame Buffer (EFB) cannot send pixel data directly to the video interface; therefore, the
frame buffer must first be copied out to main memory. We call the frame buffer in main memory the Exter-
nal Frame Buffer (XFB). In this section, we will fully describe the copy operation necessary to transfer EFB
to XFB.

Since the GP copy operation relates closely to video interface functionality, the remainder of this section
often refers to Video Interface library (VI). For a complete description of this library, see the Video Interface
Library (VI) section in this guide.

12.1 The copy pipeline
The diagram below illustrates the operations applied during the frame buffer copying process.

Figure 62 - EFB-to-XFB copy pipeline

12.1.1 Copy source
The EFB source of the copy operation is specified by the following API:

Code 84 - GXSetDispCopySrc

void GXSetDispCopySrc(
 u16 left,
 u16 top,
 u16 wd,
 u16 ht);

GXSetDispCopySrc defines a sub-region of pixels in the EFB memory as the source for the copy opera-
tion. Since the GP works on regions of 2x2 pixels, there is the restriction that all of the source copy param-
eters be even numbers.

12.1.2 Antialiasing and deflickering
The GP performs antialiasing in two parts. During rendering, it can rasterize to a super-sampled EFB. Dur-
ing the copy operation, the multiple samples per pixel can be filtered together to create the final pixel out-
put color. In fact, samples from more than one row of pixels can be filtered together, enabling deflickering
to be performed during the copy operation as well. Samples from up to three rows of pixels can be filtered
together (with some restrictions). A more detailed discussion of Nintendo GameCube antialiasing and
deflickering may be found in the Advanced Rendering section in this guide.

EFB XFB

copy pipeline

RGB to YUV
Gamma

Correction

gamma

Y scale

scale

Antialias
Deflicker

filter state
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

126 Graphics Library (GX)
The antialiasing mode is determined by the frame buffer pixel format. "12.4 Embedded frame buffer for-
mats" on page 131 discusses how to set this format. The following function sets all super-sample locations
and sample filter weights:

Code 85 - GXSetCopyFilter

u32 GXSetCopyFilter(
 GXBool aa,
 u8 sample_pattern[12][2],
 GXBool vf,
 u8 vfilter[7]);

The aa parameter indicates whether to use the supplied sample_pattern, or a default pixel-centered pat-
tern. The sample_pattern parameter indicates the exact location of each pixel subsample. The vf parame-
ter indicates whether to use the supplied vfilter, or a default single-line filter. The vfilter indicates the
weights to use for each sample. Refer to the Advanced Rendering section for more details on these
parameters.

When rendering in non-antialiased mode, the sample pattern must be set to a pixel-centered pattern, or
else visual anomalies will result. Similarly, the vertical filter must always be set correctly depending upon
the render mode chosen. Note, however, that the vertical filter only samples from the adjacent rendered
pixels (in the EFB). When rendering in field mode, such pixels are not adjacent during scan-out (since the
odd and even fields from the XFB will be interlaced with each other); therefore, the vertical filter should not
be used in this mode. Moreover, the vertical filter is unnecessary in double-strike mode. See below for fur-
ther discussion about render modes.

The same copy hardware is used for the video copy path as well as the texture copy path, thus it may be
necessary to change the sample pattern and vertical filter within a frame when doing a texture copy fol-
lowed by a video copy.

Clamping is generally required when copying the first and last scan lines from the source rectangle. This
makes sure that the GP uses valid data when sampling above the first scan line and below the last. How-
ever, there may be times when it is necessary to disable clamping (see "12.2.7 Interlaced, antialiased,
frame-rendering, deflicker mode" on page 130). Clamping is controlled by this call:

Code 86 - GXSetCopyClamp

u32 GXSetCopyClamp(GXFBClamp clamp);

12.1.3 Gamma correction
Pixel values may be gamma-corrected during the copy operation. Three choices of gamma correction are
available: 1.0, 1.7, and 2.2. The default gamma set in GXInit is 1.0.

Note: The gamma for texture copy is fixed at 1.0. The display-copy gamma can be set with the following
function:

Code 87 - GXSetDispCopyGamma

u32 GXSetDispCopyGamma(GXGamma gamma);

Determining the appropriate gamma correction will depend on your design for the game. For many games,
you find it preferable to maximize low intensity color resolution by setting the gamma correction at 1.0. For
a more detailed discussion of gamma correction, refer to "2.1.3 Gamma correction" on page 7 of the Dem-
onstration Library (DEMO) section.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

The copy pipeline 127
12.1.4 RGB to YUV
A luma/chroma YUV format stores nearly the same visual quality pixel as RGB does, but requires only two-
thirds of the memory. Therefore, we convert RGB EFB to YUV XFB during the copy operation to save on
the amount of main memory used for the frame buffer.

Note: There is a corresponding savings of main memory bandwidth as well (for both the copy operation
and the XFB video scan-out). For conversion details, see "12.5 External frame buffer format" on
page 132.

As an example, consider a 640x240 (150,000 pixels) frame buffer. A frame buffer this size requires 900KB
to double-buffer using 24-bit/pixel RGB format. However, a 16-bit/pixel YUV format requires only 600KB,
which saves a difference of 300KB in main memory.

12.1.5 Y scale
The Nintendo GameCube can arbitrarily scale a rendered image both horizontally and vertically. Vertical y
scale occurs during the copy process, while horizontal x scale occurs during the video display. For more
details on scaling (x, y) for display, see "4.2 Initialization" on page 11 of the Video Interface Library (VI) sec-
tion. The following function sets the y scale factor:

Code 88 - GXSetDispCopyYScale

u32 GXSetDispCopyYScale(f32 yscale);

The function returns the number of lines that will be copied, which can be used to compute the XFB size.

12.1.6 Copy destination
The destination of the copy operation is defined by:

Code 89 - GXCopyDisp

void GXSetDispCopyDst(u16 width, u16 height);
void GXCopyDisp(void *dest, GXBool clear);

GXSetDispCopyDst must be called in order to set the proper stride for the copy operation. GXCopyDisp
specifies the XFB destination in main memory and actually issues the copy command. The destination
XFB must begin at a 32-byte aligned address; moreover, the amount of memory required depends on
width alignment. For a complete list of rules for allocating the correct amount of XFB memory, see "4.2.2
Frame buffer allocation" on page 12 of the Video Interface Library (VI) section.

12.1.7 Clear color and Z for next frame
The copy operation can clear the color frame buffer and the Z buffer during the copy. This eliminates clear
time when rendering the next frame. To perform a clear during the copy operation, use the clear parameter
in GXCopyDisp. The clear parameter is only effective if the buffer has been enabled for update (see
GXSetColorUpdate, GXSetAlphaUpdate, and GXSetZMode). This allows individual buffers to be
cleared during the copy operation. The following function specifies the clear color and clear Z values to use
during the copy operation:

Code 90 - GXSetCopyClear

void GXSetCopyClear(GXColor clear_clr, u32 clear_z);
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

128 Graphics Library (GX)
The clear_clr parameter is in RGBA8 format, while the clear_z parameter is in 24-bit format. The parame-
ters are converted into the proper format during the clear operation. The constant GX_MAX_Z24 specifies
the maximum depth value.

12.2 Predefined render modes
The set of controls necessary to correctly configure the GX and VI libraries is complex. Many game design-
ers like to be able to customize these controls, so the GX and VI libraries provide all of the necessary con-
trols to give developers maximum control. The GX API provides a set of predefined rendering modes
containing all of the parameters necessary to make this task simpler.

Each rendering mode contains the following data:

• EFB and XFB size and format information.

• Position of the XFB on TV screen.

• TV video format (interlaced or double-strike version of NTSC, PAL, M/PAL).

• Antialiasing state and deflicker filter.

• Field-rendering mode (i.e., enabled or not).

For information on TV video formats and field-rendering, refer to the Video Interface Library (VI) section.

The diagram below illustrates the relationships between the render mode structure, related GX calls, and
parts of the graphics hardware pipeline:

Figure 63 - Render mode structure, related calls and hardware modules

GP pipeline

VI

viewport

scissor

copy

EFB

XFB

VIConfigure

GXSetScissor

GXCopyDsp

GXSetDispCopySrc

GXSetDispCopyYScale

GXSetCopyFilter

GXSetPixelFormat

GXSetViewportJitter

GXSetViewport

Render Mode

frame buffer size, format

XFB position on TV

TV video format

field rendering

AA state, deflicker filter

GXSetFieldMode

GXSetDispCopyDst
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Predefined render modes 129
We define seven basic rendering modes for each of the three main television video modes (NTSC, PAL, M/
PAL), making a total of 21 predefined rendering modes. These are described below.

12.2.1 Double-strike, non-antialiased mode
In this mode, VI outputs a double-strike, or non-interlaced, signal. This mode turns off antialiasing (AA) to
speed up fill rate. For NTSC, this mode renders 640x240 lines at 60Hz.

Figure 64 - Double-strike, non-antialiased mode

12.2.2 Double-strike, antialiased mode
This mode is similar to the preceding one; however, it supports antialiasing (at a potentially reduced fill
rate).

12.2.3 Interlaced, non-antialiased, field-rendering mode
In this mode, VI outputs an interlaced signal, i.e., the rendering alternates between even and odd fields to
support field-rendering. Antialiasing is turned off for maximum fill rate. For NTSC, this mode renders
640x240 lines at 60Hz.

Notes:

• Deflicker is not possible in this mode.

• The fields must be completed and swapped before vertical retrace, or else the incorrect field is dis-
played during the next display interval.

Figure 65 - Interlaced, non-antialiased, field-rendering mode

12.2.4 Interlaced, antialiased, field-rendering mode
This is the same as the preceding mode, except that it supports antialiasing (at a potentially reduced fill
rate).

Copy

EFB

XFB
Display TV Screen
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

130 Graphics Library (GX)
12.2.5 Interlaced, non-antialiased, frame-rendering, deflicker mode
In this mode, VI outputs an interlaced signal. The entire frame is copied from EFB to XFB with a deflicker-
ing filter. The video interface hardware can select whether to display the even or odd field within this frame
buffer. For NTSC, this mode renders 640x480 lines at any frame rate.

Figure 66 - Interlaced, non-antialiased, frame-rendering, deflicker mode

12.2.6 Interlaced, non-antialiased, frame-rendering, non-deflicker mode
Similar to interlaced, frame-rendering, deflicker mode, except that this mode does not support deflickering.

12.2.7 Interlaced, antialiased, frame-rendering, deflicker mode
When rendering a large antialiased frame, the embedded frame buffer is not big enough to hold the entire
frame, so two rendering passes are necessary to construct a single complete frame buffer.

Figure 67 - Interlaced, antialiased, frame-rendering, deflicker mode

Since the vertical deflicker filter spans three lines, it is necessary to have some overlap in each pass where
the images will be joined, as illustrated in "Figure 68 - Overlapping copy" on page 131. This diagram shows
one extra line in each pass for a total of two lines of overlap. Due to the restriction that only even numbers
of lines can be copied, you must actually have two extra lines from each pass, resulting in a total overlap of
four lines.

Note: Copy clamping must be disabled for the bottom of the first pass copy and for the top of the second
pass copy.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GX API default render mode 131
Figure 68 - Overlapping copy

Drawing the top and bottom halves of the screen correctly involves adjusting the viewing frustum. For
HW2, you can adjust the scissoring instead (refer to "15 GX updates for HW2" on page 155). See the
demo frb-aa-full for an example.

12.3 GX API default render mode
GXInit queries VIGetTVFormat to determine the GX API default render mode. The default mode may
be one of the following, depending on format:

• GXNtsc480IntDf.

• GXPal528IntDf.

• GXMpal480IntDf.

These modes feature:

• Full-screen frame-based rendering.

• Non-antialiased for the fastest fill rate performance.

• Deflickered display to reduce flickering artifacts.

• Interlaced display output.

If DEMOInit is called with a non-null render-mode pointer, then the referenced render mode is used. If the
pointer is null, then a default render mode is used. In addition, if a default mode is used, DEMOInit will call
GXAdjustForOverscan and trim 16 scan lines off the top and bottom of the screen. This adjustment is
for demonstration purposes only; it is not guaranteed to make the viewport visible on all television sets.

12.4 Embedded frame buffer formats
The EFB has a maximum memory capacity of 2027520B = 640 x 528 x (3B(color) + 3B(Z)). The maximum
pixel width and height of the frame buffer is determined by the size of each pixel. There are two different
pixel sizes:

• 48-bit color and Z.

• 96-bit super-sampled color and Z.

To set these formats, you must call GXSetPixelFmt. Setting the pixel format also controls the antialiasing
mode.

Note: You must also call GXSetCopyFilter when changing mode.

Pass 1
Antialias copy

Pass 2
Antialias copy

EFB

EFB

Common lines

Last line copied

First line copied

Deflicker filter
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

132 Graphics Library (GX)
Code 91 - GXSetPixelFormat

void GXSetPixelFmt(GXPixelFmt pix_fmt, GXZFmt16 z_fmt);

Changing pixel formats causes a flush of the rendering pipeline. Also, data existing in the frame buffer is
not converted when you change formats, so mixed-format rendering is not possible in this manner. As a
result, it may be necessary to clear the frame buffer again after changing modes.

12.4.1 48-bit format – non-antialiasing
The 48-bit format is intended for non-antialiasing; it has the following features:

• 24-bit color (either 8/8/8 with no alpha, or 6/6/6/6 with 6 bits of alpha).

• 24-bit Z.

This format can support a maximum resolution of 640x528. The width must be between 0-640 and the EFB
stride is fixed at 640 pixels.

12.4.2 96-bit super-sampling format – antialiasing
The 96-bit pixel format is for antialiasing and has the following features:

• Samples of 16-bit color (5/6/5, no alpha).

• Samples of 16-bit Z.

This format can support a maximum resolution of 640x264. The width must be between 0-640 and the EFB
stride fixed at 640 pixels.

12.5 External frame buffer format
Pixels in the XFB are stored as illustrated below:

Figure 69 - XFB format in main memory

In the down-sampling process indicated above, clamping is included for the left and right edges.

0 1 2 3 4 5 6 7

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7U0' V0' U2' V2' U4' V4' U6' V6'

R G B R G B R G B R G B R G B R G B R G B R G B

Y U V Y U V Y U V Y U V Y U V Y U V Y U V Y U V

RGB to YUV
conversion

Downsampling
of U and V

U(i) = 1/4 * U(i-1) + 1/2 * U(i) + 1/4 * U(i+1)

V(i) = 1/4 * V(i-1) + 1/2 * V(i) + 1/4 * V(i+1)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

CPU direct EFB access 133
The following computations illustrate the conversion of RGB to YUV:

Equation 37 - RGB to YUV conversion

Note: The range for Y is only 16 <= Y <= 235. This is in order to meet the requirements of the video
encoder.

12.6 CPU direct EFB access
The embedded frame buffer is memory-mapped within the CPU’s address space. Thus you may directly
read from and write to the EFB from the CPU. (That being said, the access is not truly direct, since writes
go through various pixel-processing operations before being written to the EFB, and reads are potentially
decoded before being presented to the CPU.)

Because writes become pixel operations, one may configure the CPU-EFB pixel pipeline as follows:

Code 92 - Functions to configure CPU-EFB accesses

void GXPokeAlphaMode(GXCompare func, u8 threshold);
void GXPokeAlphaRead(GXAlphaReadMode mode);
void GXPokeAlphaUpdate(GXBool update_enable);
void GXPokeBlendMode(GXBlendMode type, GXBlendFactor src_factor,
 GXBlendFactor dst_factor, GXLogicOp op);
void GXPokeColorUpdate(GXBool update_enable);
void GXPokeDstAlpha(GXBool enable, u8 alpha);
void GXPokeDither(GXBool dither);
void GXPokeZMode(GXBool compare_enable, GXCompare func, GXBool update_enable);

Most of these functions correspond to their normal pipeline counterparts (for example, GXPokeZMode
works just like GXSetZMode, except that it only affects CPU writes to the Z buffer), so we describe the
exceptions.

GXPokeAlphaMode works similarly to GXSetAlphaCompare; however, only a single threshold may be
used. GXPokeAlphaRead is used to control the alpha value that is read from the EFB when no alpha
channel is present.

GX includes these functions for EFB access:

Code 93 - Functions for CPU-EFB access

void GXPokeARGB(u16 x, u16 y, u32 color);
void GXPeekARGB(u16 x, u16 y, u32* color);
void GXPokeZ(u16 x, u16 y, u32 z);
void GXPeekZ(u16 x, u16 y, u32* z);
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

134 Graphics Library (GX)
Each of these functions results in a 32-bit CPU bus transaction that will write (poke) or read (peek) the
color or Z value at the specified pixel location. These functions are implemented as follows:

Code 94 - Implementation of GXPeek and GXPoke

#define EFB_ADDRESS 0x08000000

void GXPeekARGB(u16 x, u16 y, u32* color)
{
 u32 addr;
 addr = (u32) OSPhysicalToUncached(EFB_ADDRESS) + offset(x, y);
 color = ((u32 *)addr);
}

void GXPokeARGB(u16 x, u16 y, u32 color)
{
 u32 addr;
 addr = (u32) OSPhysicalToUncached(EFB_ADDRESS) + offset(x, y);
 (u32)addr = color;
}

// where offset can be obtained from:
// offset = ((y)<<12) + ((x)<<2);

// for Z access, add (1<<22) to addr

It is possible to do Z-buffered writes to the color buffer; however, this requires the use of uncached 64-bit
bus transactions. The best way to do this is by using the locked-down cache mechanism.

Note: Colors are always in 32-bit format on the CPU side. The GP takes care of converting colors as
necessary for reading and writing to the EFB. With respect to Z, things are a little bit different.
When the frame buffer is in 24-bit mode, Z is read and written as a 24-bit integer. When the frame
buffer is in 16-bit mode, the Z is not converted. The following convenience functions are provided
to convert between a 24-bit integer Z value and one of the 16-bit Z formats:

Code 95 - Functions to manipulate 16-bit Z formats

u32 GXCompressZ16(u32 z24, GXZFmt16 zfmt);
u32 GXDecompressZ16(u32 z16, GXZFmt16 zfmt);

Note: Color and Z always require 32 bits (each) to transfer, regardless of the frame-buffer format.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

135
13 Graphics FIFO

13.1 Description
Figure 70 - GXFifoObj

The GX API transmits commands from the CPU to the Graphics Processor (GP) using a GXFifoObj
structure. The GXFifoObj structure describes a region of main memory, allocated by the application, set
aside for storing graphics commands. The FIFO can be attached to either the CPU or GP or both. When
the FIFO is attached to the CPU, GX commands will be written to the FIFO. There is always one—and only
one—FIFO attached to the CPU. When the FIFO is attached to the GP, the GP will read and process
graphics commands. Only one FIFO can be attached to the GP at a time.

The purpose of the FIFO is to allow the CPU and GP to work in parallel at close to their peak rates. There
are two basic methods of using the FIFO to achieve parallelism: immediate mode and multi-buffer mode.

Main Memory

GXFifoObj

FIFO
 size

Lo W
ater

M
ark

H
i W

ater M
ark

FIFO base

write pointer

Gfx
Cmds

read pointer

0x0000

0xffff...
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

136 Graphics Library (GX)
When a single FIFO is attached to both the CPU and the GP, the system is said to be in immediate mode.
The FIFO read and write pointers are managed by hardware as a true FIFO. As the CPU writes graphics
commands to the FIFO, the GP will process them in order. The hardware contains special flow control logic
to prevent writes from over running reads and to wrap the read and write pointers from the last address of
the buffer back to the first address. GXInit sets up the system to use immediate mode by default. Imme-
diate mode is generally easier to use, because once it is set up, no further management by the application
is required.

Figure 71 - Immediate mode

Main Memory

GXFifoObj

CPU

Write-Gather
Buffer

GP

Command
Processor

read pointer

write pointer

0x0000
0x0001
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Creating a FIFO 137
It is also possible to connect one FIFO to the CPU while the GP is reading from a different FIFO. This is
called multi-buffer mode. In this case, the FIFOs are managed more like buffers than FIFOs, since there
are no simultaneous reads and writes to a FIFO. You may choose multi-buffer mode if you require dynamic
memory management of FIFOs; however, there are complications that make this choice less desirable.
These will be described below.

Figure 72 - Multi-buffer mode

The CPU always writes graphics commands to the FIFO in 32-byte transfers. To do this, the CPU has a
special write-gather function that automatically packs graphics commands into 32-byte words. The GP
always reads graphics commands from the FIFO in 32-byte transfers.

13.2 Creating a FIFO
The GX API declares a static GXFifoObj structure internally. This structure is initialized when GXInit is
called:

Code 96 - GXFifoObj

GXFifoObj* GXInit(void* base, u32 size);

The FIFO base pointer must be aligned to 32 bytes. The application is responsible for allocating the mem-
ory for the FIFO. OSAlloc returns 32-byte-aligned pointers.

The size parameter passed to GXInit is the size of the FIFO in bytes, which must be a multiple of 32. The
minimum FIFO size is 64KB. GXInit sets up the FIFO for immediate-mode graphics; i.e., both the CPU
and GP are attached to the FIFO, the read and write pointers are initialized to the base pointer, and the
high- and low-water marks (see "13.4 FIFO status" on page 139) are enabled.

GXInit returns a pointer to the initialized GXFifoObj to the application.

Main Memory

CPU

Write-Gather
Buffer

GP

Command
Processor

read pointer

write pointer
GXFifoObj A

GXFifoObj B

read pointer

write pointer

0x0000
0x0001
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

138 Graphics Library (GX)
If the application wants to operate in multi-buffered mode, then it must allocate additional FIFOs. The appli-
cation must allocate the memory for each additional FIFO and initialize a GXFifoObj as well. The follow-
ing functions initialize the GXFifoObj:

Code 97 - FIFO initialization functions

void GXInitFifoBase(
 GXFifoObj* fifo,
 void* base,
 u32 size);
void GXInitFifoPtrs(
 GXFifoObj* fifo,
 void* read_ptr,
 void* write_ptr);
void GXInitFifoLimits(
 GXFifoObj* fifo,
 u32 hi_water_mark,
 u32 lo_water_mark);

Normally, the application only needs to initialize the FIFO read and write pointers to the base address of
the FIFO. Once initialized, the system hardware will control the read and write pointers automatically.

The application only needs to call GXInitFifoLimits when the FIFO will be used in immediate mode.
This function sets the high and low water marks for the FIFO, which are not available in multi-buffer mode
(see "13.5 FIFO flow control" on page 140).

Note: These APIs are intended for use on FIFOs that are not attached to the CPU or GP. This is to pre-
vent any temporary inconsistencies in the pointers and water mark values. These APIs will cause
assertion failures if they are used on attached FIFOs.

The following inquiry functions may be used to retrieve the data set above. To get the current FIFO point-
ers, refer to "13.4 FIFO status" on page 139.

Code 98 - FIFO basic inquiry functions

void* GXGetFifoBase(GXFifoObj* fifo);
u32 GXGetFifoSize(GXFifoObj* fifo);
void GXGetFifoLimits(GXFifoObj* fifo, u32* hi, u32* lo);

13.3 Attaching and saving FIFOs
Once a FIFO has been initialized, it can be attached to the CPU or the GP or both. Only one FIFO may be
attached to either the CPU or GP at the same time. Once a FIFO is attached to the CPU, the CPU may
issue GX commands to the FIFO. When a FIFO is attached to the GP, it will be enabled to read graphics
commands from the FIFO. The following functions attach FIFOs:

Code 99 - FIFO attachment functions

void GXSetCPUFifo(GXFifoObj* fifo);
void GXSetGPFifo(GXFifoObj* fifo);

You may inquire which FIFO objects are currently attached with these functions:

Code 100 - FIFO attachment inquiry functions

GXFifoObj* GXGetCPUFifo(void);
GXFifoObj* GXGetGPFifo(void);
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

FIFO status 139
In multi-buffer mode, when the CPU is finished writing GX commands, the FIFO should be “saved” before
switching to a new FIFO. The following function saves the CPU FIFO:

Code 101 - GXSaveCPUFifo

void GXSaveCPUFifo(GXFifoObj* fifo);

When a FIFO is saved, the write-gather buffer is flushed to make sure all graphics commands are written
to main memory. In addition, the current FIFO read and write pointers are stored in the GXFifoObj struc-
ture.

Note: There is no save function for the GP. Once the GP is attached, graphics commands will continue to
be read until either:

• The FIFO is empty.

• A FIFO breakpoint is encountered (see "13.6.3 FIFO breakpoint" on page 142).

• The GP is preempted using GXAbortFrame (see "14 Performance metrics" on page 147).

13.4 FIFO status
You can use the following functions to read the status of a FIFO and the GP:

Code 102 - FIFO status functions

void GXGetFifoStatus(
 GXFifoObj* fifo,
 GXBool* overhi,
 GXBool* underlo,
 u32* fifo_cnt,
 GXBool* cpu_write,
 GXBool* gp_read,
 GXBool* fifowrap);

void GXGetGPStatus(
 GXBool* overhi,
 GXBool* underlow,
 GXBool* readIdle,
 GXBool* cmdIdle,
 GXBool* brkpt);

void GXGetFifoPtrs(
 GXFifoObj* fifo,
 void** readPtr,
 void** writePtr);

Use GXGetFifoStatus to get the status of a specific FIFO. If the FIFO is currently attached to the CPU,
the parameter cpu_write will be GX_TRUE. When the FIFO is currently attached to the GP, the parameter
gp_read will be GX_TRUE. When a FIFO is attached to either the CPU or the GP, the status will be read
directly from the hardware’s state. If the FIFO is not attached, the status will be read from the GXFifoObj.
GXGetFifoStatus reports whether the specified FIFO is over its high water mark (overhi) or below its
low water mark (underlo).

If the FIFO is currently attached to the CPU, executing GXGetFifoStatus causes a flush before getting
the status. This will cause 32 bytes of NOPs to be written to the FIFO. As a result, you should not call
GXGetFifoStatus on a very frequent basis.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

140 Graphics Library (GX)
In general, the hardware cannot detect when a FIFO overflows; i.e., when the amount of data exceeds the
size of the FIFO. Thus, the value of fifo_cnt (number of 32-byte blocks in the FIFO) may not necessarily be
accurate if an overflow has occurred.

Although there is no general way to detect FIFO overflows, the hardware can detect when the CPU write
pointer reaches the top of the FIFO. If this condition has occurred, the fifowrap argument will return
GX_TRUE. Thus, you can use the fifowrap argument to detect FIFO overflows if you ensure that the CPU’s
write pointer is always initialized to the base of the FIFO. The fifowrap argument is set only if the FIFO is
currently attached to the CPU.

Use GXGetGPStatus to get the status of the GP (regardless of the FIFO that is attached to it). The mini-
mum requirement before attaching a new GP FIFO is to wait for the readIdle status to be GX_TRUE. Nor-
mally, additional requirements would include making sure that all graphics commands have been rendered
into the EFB, and that the EFB has been copied to main memory. The cmdIdle status provides the addi-
tional information that the command processor is idle.

The parameters underlow and overhi indicate where the write pointer is, relative to the high and low water
marks. They do not indicate any error in processing.

GXGetFifoPtrs may be used to request the read and write pointers of the given FIFO. If the given FIFO
is attached to either the CPU or the GP, the appropriate hardware registers are read in order to provide the
correct information.

13.5 FIFO flow control
When a FIFO is attached to both the CPU and GP (immediate mode), care must be taken so that the CPU
stops writing commands when the FIFO is too full. The high water mark defines how full the FIFO can get
before graphics commands will no longer be written to it. Since there may be up to 16KB of buffered graph-
ics commands in the CPU, we recommend that you set the high water mark to the FIFO size less 16KB.
(This 16KB figure comes into play if the locked-cache mechanism is used to write to a FIFO.)

When the high water mark is encountered, the program will be suspended, but other interrupt-driven tasks
such as audio will continue.

Note: In a multi-threaded program, the library will have to choose a particular thread to suspend. By
default, the thread that called GXInit is suspended (which, in a single-threaded application,
would be the main loop). However, you may designate a different thread to be suspended with the
following APIs:

Code 103 - APIs to get and set the current GX thread

OSThread* GXGetCurrentGXThread (void);
OSThread* GXSetCurrentGXThread (void);

GXSetCurrentGXThread will designate the calling thread as the current GX thread and return a pointer
to the previous GX thread. GXGetCurrentGXThread will return a pointer to the current GX thread.

Note: It is a programming error to call GXSetCurrentGXThread while the previous GX thread is sus-
pended waiting for a low water mark. This condition indicates that, potentially, your program has
two threads generating GX data. An assertion failure will occur in this situation.

The low water mark defines how empty the FIFO must become after reaching a high water mark before the
program (or GX thread) is allowed to continue. We recommend that the low water mark be set to (FIFO
size / 2). The low water mark prevents frequent context switching in the program, since it does not need to
poll some register or constantly receive overflow interrupts when the amount of new command data stays
close to the high water mark.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Draw synchronization functions 141
When in multi-buffered mode, the high and low water marks are disabled. When a FIFO is attached to the
CPU, and the CPU writes more commands than the FIFO will hold, the write pointer will be wrapped from
the last address back to the base address. Previous graphics commands in the FIFO will be overwritten. It
is possible to detect only when the write pointer wraps over the top of the FIFO (which indicates an over-
flow only if the FIFO’s write pointer was initialized to the base of the FIFO before commands were sent).
See GXGetFifoStatus for more information.

In order to prevent FIFO (buffer) overflow in multi-buffered mode, the application must use a software-
based checking scheme. The program should keep its own counter of the buffer size, and before any
group of commands is added to the buffer, the program should check and see if there is room. If room is
available, the size of the group should be added to the buffer size. If room is not available, the buffer
should be flushed and a new one allocated.

Instead of using multi-buffered mode, it may be preferable to use a single large FIFO along with break-
points to simulate multi-buffering. Breakpoints are discussed in the next section.

13.6 Draw synchronization functions
The rendering pipeline consists of several asynchronous components. Among them are the CPU generat-
ing graphics commands, the GP consuming the commands and producing frame buffers, and the VI dis-
playing the frame buffers. We provide several mechanisms to synchronize these components, allowing for
various programming models (with different levels of complexity).

The CPU must be coordinated with the GP since not all of the graphics data goes through the FIFO. All the
indexed data and texture data that the CPU provides must remain available until the GP has read it, after
which it can be altered for the next frame or deleted as necessary. The GP must be coordinated with the VI
so that the EFB is copied only to an inactive external frame buffer XFB, and so that VI will switch to scan-
ning out the new XFB at the right time, freeing up the previously scanned-out XFB.

First, we describe the mechanisms that are available for synchronization. Then we show how to use the
different mechanisms for various synchronization schemes with varying levels of complexity and efficiency.

13.6.1 GXDrawDone
We have mentioned GXDrawDone briefly already. GXDrawDone is actually a wrapper around two synchro-
nization functions: GXSetDrawDone and GXWaitDrawDone. The former sends a draw-done token into
the FIFO and flushes it, while the latter waits for the pipeline to flush and the token to appear at the bottom
of the pipe. Instead of waiting for the token, you can also make use of a callback that occurs as a result of
a draw-done interrupt. This callback runs with interrupts disabled, and thus must complete quickly. The
function to set the callback routine also returns the old callback function pointer. The draw-done functions
are summarized below:

Code 104 - GXDrawDone synchronization commands

void GXDrawDone();
void GXSetDrawDone();
void GXWaitDrawDone();
typedef void (*GXDrawDoneCallback)(void);
GXDrawDoneCallback GXSetDrawDoneCallback(GXDrawDoneCallback cb);

13.6.2 GXDrawSync
In order to detect that the pipeline has completely rendered geometry, you can use the functions
GXSetDrawSync and GXReadDrawSync. Use GXSetDrawSync to send a token (a 16-bit number of your
choosing) down the pipeline after rendering the geometry. This token will be stored in a special token reg-
ister when it reaches the bottom of the pipeline. Use GXReadDrawSync to poll the token register. When
the token register value returned matches the token you sent, the geometry has been rendered completely.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

142 Graphics Library (GX)
It is also possible to receive an interrupt when the draw token reaches the bottom of the pipeline. The
application can register a callback, using GXSetDrawSyncCallback, that will be called by the interrupt
handler. The callback’s argument is the value of the most-recently-encountered token. Since it is possible
to miss tokens (because graphics processing does not stop while the callback is running), your code
should be capable of deducing if any tokens have been missed (e.g., by using monotonically increasing
values).

The draw-sync mechanism is similar to the draw-done mechanism, with two major differences. First, draw-
sync allows you to insert a numbered (16-bit) token into the pipe and read the token value when it reaches
the pipe bottom. Second, draw-sync does not force the pipe to be flushed, and thus does not create a
“bubble” of idle cycles within the pipe. The draw-sync functions are summarized below:

Code 105 - GXDrawSync synchronization commands

void GXSetDrawSync(u16 token);
u16 GXReadDrawSync();
typedef void (*GXDrawSyncCallback)(u16 token);
GXDrawSyncCallback GXSetDrawSyncCallback(GXDrawSyncCallback cb);

13.6.3 FIFO breakpoint
Sometimes it is useful to write two or more frames of graphics to the same FIFO. The breakpoint feature
will cause GP FIFO reads to be disabled when the FIFO read pointer matches the breakpoint value. The
breakpoint can be set using:

Code 106 - GXEnableBreakPt

void GXEnableBreakPt(void* break_pt);

You can re-enable GP FIFO reads by using:

Code 107 - GXDisableBreakPt

void GXDisableBreakPt(void);

For example, after writing frame A of graphics, read the current CPU FIFO write pointer using
GXGetFifoPtrs. Make this the current breakpoint using GXEnableBreakPt. Continue writing frame B
of graphics into the FIFO. GP FIFO reads will be disabled when the read pointer reaches the break point.
The read_idle status can be polled for this event. The application can enable processing of frame B graph-
ics by calling GXDisableBreakPt.

There is also a CPU interrupt that is associated with the break point. You can define a callback to be exe-
cuted when this interrupt occurs. This callback will run with interrupts disabled, and thus it is necessary for
the callback to run as quickly as possible. The callback can be set using GXSetBreakPtCallback, which
also returns the previous callback:

Code 108 - GXSetBreakPtCallback

typedef void (*GXBreakPtCallback)(void);

GXBreakPtCallback GXSetBreakPtCallback(GXBreakPtCallback cb);

For an example of how to use the same FIFO to manage two frames of graphics with breakpoints, take a
look at mgt-fifo-brkpt in the gxdemos/Management branch of the source tree.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Draw synchronization methods 143
13.6.4 Abort frame
GX allows you to halt the GP and flush all commands currently in the FIFO up to the next break point or the
end of the FIFO (if no break point is set). The following command achieves this:

Code 109 - GXAbortFrame

void GXAbortFrame(void);

This command resets all state in the GP. Textures loaded in texture memory are retained, but if a load was
in progress, you must make sure it was not aborted (you should use draw syncs to verify this). When start-
ing the next frame, you should send down new, complete state information (you should not assume that
any state has been retained from the aborted frame).

13.6.5 VI synchronization
The preceding functions synchronize the CPU with the GP. In order to synchronize the CPU with the video
output, you may use the following functions:

Code 110 - VI synchronization commands

void VIWaitForRetrace();
typedef void (*VIRetraceCallback)(u32 retraceCount);
VIRetraceCallback VISetPreRetraceCallback(VIRetraceCallback cb);
VIRetraceCallback VISetPostRetraceCallback(VIRetraceCallback cb);

The VIWaitForRetrace function suspends the current thread until a vertical retrace occurs. When the
retrace does occur, an interrupt is sent to the CPU. The handler for this interrupt will first call the “pre”
retrace callback. It will next update the VI hardware registers, and then it calls the “post” retrace callback.
Finally, it wakes any threads that are waiting for retrace. The callback routines run with interrupts off, and
therefore must complete quickly. The functions to set the callback routines also return the old callback
function pointer. For more details on these functions, refer to the Video Interface Library (VI) section.

13.7 Draw synchronization methods

13.7.1 Double-buffering
The simplest programming model uses double-buffering and GXDrawDone to coordinate the CPU with the
GP. Having the EFB and one XFB would seem to be enough to provide for double-buffering; however, due
to synchronization issues, it is simpler to have two XFBs. This allows the copy operation to be performed
after graphics rendering is finished without having to stall until vertical retrace occurs. The following end-of-
frame code sequence illustrates simple double-XFB synchronization:

Code 111 - Double-buffer copy synchronization

// ... draw the image in the EFB, then:
GXCopyDisp(xfb, GX_TRUE);
GXDrawDone();
VISetNextFrameBuffer(xfb);
VIFlush();
VIWaitForRetrace();
xfb = (xfb == xfb1) ? xfb2 : xfb1;
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

144 Graphics Library (GX)
With only one XFB, the copy operation must be performed during vertical retrace. The copy operation can
be completed in about 0.5 milliseconds, thus finishing before the next video field begins to display. Since
the copy command must be issued through the FIFO, you must hold up the FIFO until vertical retrace
occurs. In addition, the copy command must be guaranteed to issue immediately upon vertical retrace.
The latter requirement means that the copy command must be issued during a vertical retrace interrupt
callback. The following code illustrates this method:

Code 112 - Single-buffer copy synchronization

// main loop: // vertical retrace interrupt “post” callback:
// ... draw the image in the EFB, then: if (do_copy) {
GXDrawDone(); GXCopyDisp(xfb, GX_TRUE);
do_copy = GX_TRUE; GXFlush();
VIWaitForRetrace(); do_copy = GX_FALSE;
 }

13.7.2 Triple-buffering
Both of the above methods idle the CPU and the GP while waiting for vertical retrace. You can avoid this
idling by using triple-buffering. This allows the graphics pipeline to run without having to wait for video
refresh. You can perform triple-buffering in various ways. We will describe a method that uses only two
XFBs.

When you decide not to wait for draw-done and vertical retrace before continuing drawing, various compli-
cations arise. One is that indexed data and dynamic texture data must remain available until you know the
GP is done with it. Another is that you may finish drawing two frames before VI has scanned out only one.
In this case, the second frame will have nowhere to go since both XFBs will be occupied. The second copy
must wait until the vertical retrace period. Fortunately, these problems can be solved by use of the syn-
chronization commands provided.

The breakpoint must be used in order to hold back the frame buffer copy commands. The draw sync token
must be used to detect when the copy commands have completed, and the vertical retrace callbacks must
be used to coordinate the copies and buffer swaps. To see all of this in action, refer to the demo mgt-
triple-buf.c located within the gxdemos/Management branch of the source tree.

13.8 Graphics FIFO vs. display list
Writing graphics commands to a command FIFO differs from writing graphics commands to a display list in
several respects. When writing commands to a FIFO you may use GXCallDisplayList to call a display
list. Display lists (bracketed by GXBeginDisplayList/GXEndDisplayList) may not themselves call a
display list.

Using GXSetGPFifo, the application attaches a FIFO to the GP to enable processing of the FIFO’s graph-
ics commands. A display list is called using GXCallDisplayList. A FIFO may be attached to the CPU
and the GP simultaneously. The CPU creates a display list, a call command is issued into a command
FIFO, and the GP reads and processes the display list.

13.9 Notes about the write-gather pipe
The CPU write-gather pipe is a mechanism for doing fast uncached writes to main memory. It consists of a
128-byte circular queue organized as four 32-byte cache lines. It collects together the writes to a single
memory address and stores them in the queue. When a cache line is filled, it is scheduled to be written to
memory while another cache line continues to absorb the writes. When combined with the graphics pro-
cessor’s FIFO mechanism, this allows fast writing to arbitrary areas of memory, provided that all the writes
are 32-byte aligned.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GX verify 145
Flushing the write-gather/FIFO mechanism is typically done in GX by writing 32 NOPs. In general, these
NOPs are not cleared out whenever the write-gather is redirected (i.e., when using
GXBeginDisplayList or GXEndDisplayList). Therefore, a given stream (display list) may include up
to 31 extra NOPs at the start and up to 32 extra NOPs at the end.

Since the write-gather pipe is a handy way to blast data into memory, a couple of extra APIs have been
created to make this easy:

Code 113 - APIs to control the write-gather pipe

volatile void* GXRedirectWriteGatherPipe (void * ptr);
void GXRestoreWriteGatherPipe ();

The first API allows the write-gather pipe to be redirected to an arbitrary, 32-byte aligned address. It returns
a pointer to the write-gather register to which the application should actually write the data. The second
API restores the write-gather pipe to where it had been before it was redirected.

These APIs handle flushing differently than the rest of GX. They will clear out any extra zeros that were
used to flush the write-gather pipe. Also, the restore function flushes by writing only 31 zeros, thus avoid-
ing the possibility of writing out one too many cache lines.

Note: You cannot issue most GX commands while the write-gather pipe has been redirected.

13.10 GX verify
The debug version of the GX library has a verify feature which can be used to check for certain state-set-
ting errors. This checking happens when GXBegin is called. The following APIs control this feature:

Code 114 - APIs to control verification

typedef enum {
 GX_WARN_NONE, // no warnings reported
 GX_WARN_SEVERE, // reports only severest warnings
 GX_WARN_MEDIUM, // reports severe and medium warnings
 GX_WARN_ALL // reports any and all warning info
} GXWarningLevel;

void GXSetVerifyLevel(GXVerifyLevel level);

typedef void (*GXVerifyCallback)(GXVerifyLevel level,
 u32 id,
 char* msg);

GXVerifyCallback GXSetVerifyCallback(GXVerifyCallback cb);

As you can see, you can control the level of checking that occurs. The higher the verification level is set,
the longer it takes.

Note: Even setting the highest level of verification will not uncover all possible errors; there are still many
kinds of errors for which the verification function does not check.

When the verification function finds an error, it calls the GX verification callback. There is a default callback
function that simply prints the level, id, and msg out to the debug console. You may change the error-
reporting behavior by substituting your own callback function using GXSetVerifyCallback.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

146 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

147
14 Performance metrics
Application developers can access internal performance counters in the Graphics Processor. Statistics
gathered using the performance counters might be useful in tuning the application for the highest perfor-
mance, or for making load-balancing decisions at runtime.

14.1 Types of metrics
The GP metrics are grouped into different categories:

• GP front-end and texture-related metrics.

• Vertex cache metrics.

• Pixel metrics.

• Memory metrics.

A set of GX functions exists to handle each category of metrics. The functions themselves fall into three
categories:

• Set functions choose exactly which metric to count.

• Read functions read the value of the counter.

• Clear functions clear the counter back to zero.

The pixel and memory metrics do not have any “set” functions since all of the available counters may be
read at once.

14.2 GP front-end and texture-related metrics
The following functions are used to control the performance counters for various GP-related events:

Code 115 - GP metric functions

void GXSetGPMetric(GXPerf0 perf0, GXPerf1 perf1);
void GXReadGPMetric(u32* cnt0, u32* cnt1);
void GXClearGPMetric(void);

// macros to deal with counter 0 only:
void GXSetGP0Metric(GXPerf0 perf0);
u32 GXReadGP0Metric(void);
void GXClearGP0Metric(void);

// macros to deal with counter 1 only:
void GXSetGP1Metric(GXPerf1 perf1);
u32 GXReadGP1Metric(void);
void GXClearGP1Metric(void);

Note: There are two counters which are set, read, and cleared at the same time. The functions that deal
with counters 0 or 1 are generally macros that set the desired counter and turn off the other one.
You cannot clear one counter without clearing the other at the same time.

The subsequent sections of this chapter describe the various counters.

14.2.1 GP Counter 0 details
GX_PERF0_VERTICES

This metric returns the number of vertices processed by the GP as measured by the transform engine
(XF unit).
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

148 Graphics Library (GX)
GX_PERF0_CLIP_VTX

Returns the number of vertices that were clipped by the GP.

GX_PERF0_CLIP_CLKS

Returns the number of GP clocks spent clipping.

The transform engine (XF) in the GP is a pipeline that has an input stage, parallel transform and light-
ing stages, and a “bottom of pipe” processor which merges the results of lighting and texture coordi-
nate generation. The following performance counters measure how many GP cycles are spent in each
stage of the XF.

GX_PERF0_XF_WAIT_IN

Measures by how many cycles the XF has been waiting on input. If the XF is waiting a large percent-
age of the total time, it may indicate that the CPU is not supplying data fast enough to keep the GP
busy.

GX_PERF0_XF_WAIT_OUT

Measures by how many cycles the XF waits to send its output to the rest of the GP pipeline. If the XF
cannot output, it may indicate that the GP is currently fill-rate limited.

GX_PERF0_XF_XFRM_CLKS

Indicates the number of cycles that the transform engine is busy.

GX_PERF0_XF_LIT_CLKS

Indicates the number of cycles that the lighting engine is busy.

GX_PERF0_XF_BOT_CLKS

Indicates the number of cycles that the bottom of the pipe is busy.

The XF contains various state registers that control its processing. The registers are normally set using various
functions of the GX API. The following counters measure state-register accesses.

GX_PERF0_XF_REGLD_CLKS

Measures how many cycles are spent loading (writing to) XF registers.

GX_PERF0_XF_REGRD_CLKS

Measures how many cycles are spent reading XF state registers.

GX_PERF0_TRIANGLES*

The triangle metrics allow the counting of triangles under specific conditions or with specific attributes.

• GX_PERF0_TRIANGLES counts all triangles.

• GX_PERF0_TRIANGLES_CULLED counts triangles that failed the front/backface culling test.

• GX_PERF0_TRIANGLES_PASSED counts triangles that passed the front/backface culling test.

• GX_PERF0_TRIANGLES_SCISSORED counts the triangles that are scissored.

• GX_PERF0_TRIANGLES_*TEX count triangles based on the number of texture coordinates sup-
plied.

• GX_PERF0_TRIANGLES_*CLR count triangles based on the number of colors supplied.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GP front-end and texture-related metrics 149
GX_PERF0_QUAD*

The quad metrics allow you to count the number of quads (2x2 pixels) the GP processes. The term
coverage is used to indicate how many pixels in the quad are actually part of the triangle being raster-
ized. For example, a coverage of 4 means that all pixels in the quad intersect the triangle. A coverage
of 1 indicates that only one pixel in the quad intersects the triangle.

• GX_PERF0_QUAD_0CVG indicates the number of quads having 0 coverage.

• GX_PERF0_NON0CVG counts the number of quads that have greater than zero coverage values.

• GX_PERF0_QUAD_[1-4]CVG counts the quads having the given coverage.

• GX_PERF0_AVG_QUAD_CNT indicates the average quad count (number of pixels covered
divided by 4).

GX_PERF0_CLOCKS

GX_PERF0_CLOCKS counts the number of GP clocks that have elapsed since the previous call to
GXReadGP0Metric.

GX_PERF0_NONE

This metric disables counting on GP counter 0 and clears the current count.

14.2.2 Counter 1 details
GX_PERF1_TEXELS

This metric returns the number of texels processed by the GP.

GX_PERF1_TX_IDLE

Returns the number of clocks that the texture unit (TX) is idle.

GX_PERF1_TX_REGS
Returns the number of GP clocks spent writing to state registers in the TX unit.

GX_PERF1_TX_MEMSTALL
Returns the number of GP clocks the TX unit is stalled waiting for main memory.

GX_PERF1_TC_CHECK1_2
GX_PERF1_TC_CHECK3_4
GX_PERF1_TC_CHECK5_6
GX_PERF1_TC_CHECK7_8
GX_PERF1_TC_MISS

These metrics can be used to compute the texture cache (TC) miss rate. The TC_CHECK* parame-
ters count how many texture cache lines are accessed for each pixel. In the worst case, for a mipmap,
up to 8 cache lines may be accessed to produce one textured pixel. GX_PERF1_TC_MISS counts
how many of those accesses missed the texture cache. To compute the miss rate, calculate:

Equation 38 - Miss rate calculation
 GX_PERF1_TC_MISS

 GX_TC_PERF1_TC_CHECK1_2+GX_PERF1_TC_CHECK3_4+GX_PERF1_TC_CHECK_5_6+GX_PERF1_TC_CHECK_7_8

GX_PERF1_VC_ELEMQ_FULL

Counts vertex cache stalls due to its element queue being full.

GX_PERF1_VC_MISSQ

Counts vertex cache stalls due to its miss queue being full.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

150 Graphics Library (GX)
GX_PERF1_VC_MEMREQ_FULL

Counts vertex cache stalls due to too many outstanding main memory requests.

GX_PERF1_VC_STATUS7

Counts vertex cache stalls due to too many elements in the element queue depending upon a single
cache line.

GX_PERF1_VC_MISSREP_FULL

Counts vertex cache stalls due to a cache miss with all sets still in use (no replacement available).

GX_PERF1_VC_STREAMBUF_LOW

Counts vertex cache stalls due to the near-empty FIFO (streaming buffer) having priority over the ver-
tex cache.

GX_PERF1_VC_ALL_STALLS

Counts all of the above-mentioned vertex cache stall conditions.

GX_PERF1_VERTICES

This metric returns the number of vertices processed by the GP as measured by the vertex cache.

GX_PERF1_FIFO_REQ

This metric counts the number of lines (32B) read from the GP FIFO.

GX_PERF1_CALL_REQ

This metric counts the number of lines (32B) read from called display lists (GXCallDisplayList).

GX_PERF1_VC_MISS_REQ

This metric counts the number of vertex cache miss requests. Each miss requests a 32B transfer from
main memory.

GX_PERF1_CP_ALL_REQ

This metric counts all requests (32B/request) from the GP command processor (CP). It should be
equal to the sum of counts returned by GX_PERF1_FIFO_REQ, GX_PERF1_CALL_REQ, and
GX_PERF1_VC_MISS_REQ.

GX_PERF1_CLOCKS

GX_PERF1_CLOCKS counts the number of GP clocks that have elapsed since the previous call to
GXReadGP1Metric.

GX_PERF1_NONE

This metric disables counting on GP counter 1 and clears the current count.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Using performance counters 151
14.3 Using performance counters
The performance counter functions directly access GP registers, and thus they only work in immediate
mode. However, they measure information which is sent through the GP FIFO, and so some synchroniza-
tion is necessary in order to make sure the desired data is measured properly. The following code
sequence illustrates one possible approach.

Code 116 - Counting a metric

u32 metric1, metric2;

// Set desired metrics
GXSetGPMetric(GX_PERF0_VERTICES, GX_PERF1_TEXELS);

// Clear counters
GXClearGPMetric();

// Send down non-end draw-sync token
GXSetDrawSync(0x0);

// Draw Object(s)
...

// Send down ending draw-sync token, wait for it
GXSetDrawSync(0xbeef);
while (0xbeef != GXReadDrawSync())
 ;

// Read the counters
GXReadGPMetric(&metric1, &metric2);
OSReport("Number of verts: %d texels: %d\n", metric1, metric2);

14.4 Vertex cache metrics
Use the following functions to control the performance counters for vertex cache-related events:

Code 117 - Vertex cache metric functions

void GXSetVCacheMetric(GXVCachePerf attr);
void GXReadVCacheMetric(u32* check, u32* miss, u32* stall);
void GXClearVCacheMetric(void);

The “set” function allows you to choose which vertex attribute will be measured. You can choose a value of
GX_VC_ALL in order to measure all of the attributes at once. For any given attribute selection, three met-
rics are available:

• check indicates the total number of accesses to the vertex cache.

• miss indicates the total number of misses when accessing the vertex cache.

• stall indicates the number of GP clocks the GP is stalled waiting on the vertex cache.

The stall count measures how often the command processor of the GP must wait on cache requests being
filled.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

152 Graphics Library (GX)
14.5 Pixel metrics
The following functions are used to control the performance counters for pixel-related events:

Code 118 - Pixel metric functions

void GXReadPixMetric(u32* top_pixels_in,
 u32* top_pixels_out,
 u32* bot_pixels_in,
 u32* bot_pixels_out,
 u32* clr_pixels_in,
 u32* copy_clks);
void GXClearPixMetric(void);

The GP can be configured to Z-buffer before or after texture lookup (see GXSetZCompLoc). The parame-
ter top_pixels_in returns the number of pixels entering the Z compare before texture lookup. The parame-
ter top_pixels_out indicates how many pixels passed this Z compare test.

The parameter bot_pixels_in counts the number of pixels entering the Z compare after texture lookup. The
parameter bot_pixels_out indicates how many pixels passed this Z compare test.

The parameter clr_pixels_in counts the number of pixels processed by the blend unit in the last stage of
the pipeline. This is normally the sum of top_pixels_out and bot_pixels_out.

The parameter copy_clks counts the number of GP clocks spent on copy operations, either from the EFB
to a texture (see GXCopyTex), or from the EFB to a display buffer (see GXCopyDisp).

14.6 Memory metrics
The following functions are used to control the performance counters for memory-related events:

Code 119 - Memory metric functions

void GXReadMemMetric(u32* cp_req,
 u32* tc_req,
 u32* cpu_rd_req,
 u32* cpu_wr_req,
 u32* dsp_req,
 u32* io_req,
 u32* vi_req,
 u32* pe_req,
 u32* rf_req,
 u32* fi_req);
void GXClearMemMetric(void);
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Memory metrics 153
The various metrics are explained in the following table:

Table 15 - Memory metrics

Metric Purpose

cp_req The command processor (CP) is responsible for reading the Graphics FIFO, read-
ing display lists (GXCallDisplayList), and servicing vertex cache misses. This
metric returns the number of memory read requests issued by the CP.

tc_req Returns the number of memory read requests issued by the Texture Cache (TC).

Cpu_rd_req Returns the number of memory read requests made by the CPU.

cp_wr_req Returns the number of memory write requests made by the CPU.

Dsp_req Returns the number of memory requests made by the Audio DSP.

io_req Returns the number of memory requests made by IO devices.

vi_req Returns the number of memory read requests made by the Video Interface (VI).

pe_req Returns the number of memory write requests made by the Pixel Engine (PE).
These include texture copies (GXCopyTex) and display copies (GXCopyDisp).

rf_req Returns the number of memory refresh requests.

fi_req Returns the number of Forced Idle (FI) requests, which are dummy requests
required to switch the bus direction (i.e., read to write, or write to read).
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

154 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

155
15 GX updates for HW2
In this chapter, we describe the changes and additions to the GX API that are available on HW2 systems
(i.e., those systems that feature the second generation or later Graphics Processor). For the most part, GX
for HW2 is backward compatible with GX for HW1. There are a couple of exceptions which we will describe
first, followed by a brief discussion of hardware bugs (i.e., HW1 bugs fixed, and HW2 bugs remaining).
Finally, we describe the new capabilities of HW2 and how they are implemented in GX.

15.1 Compatibility
In general, GX for HW2 is backward compatible with GX for HW1. There are two exceptions:

• GXSetTevClampMode is gone.

• GXSetTevColorIn does not handle texture component swap.

GXSetTevClampMode is gone because the non-linear TEV clamp functionality has been removed from
the HW2 GP (the linear clamp mode still exists as the only possible clamp mode). New TEV compare func-
tionality has been implemented in HW2 to replace the missing clamp modes; this is described in "15.3 New
HW2 features" on page 155.

The HW2 TEV has more flexible options for swapping the texture and raster color components. As a result,
we added new API functions to control the component swapping. Due to collisions between the new API
and the texture component swapping that may be done with GXSetTevColorIn, the HW2 version of
GXSetTevColorIn does not handle any texture component swapping. Consequently, you cannot select
argument values of GX_CC_TEXRRR, GX_CC_TEXGGG, or GX_CC_TEXBBB. In addition, selecting
GX_CC_TEXC will not turn off texture component swapping.

Since GXSetTevOp calls GXSetTevColorIn, it may also behave differently under HW2. With HW2, you
cannot use GXSetTevOp in order to cancel a texture component swap (this example works on HW1).

If you desire the HW1 functionality of GXSetTevColorIn under both HW1 and HW2 platforms, you may
use the function DEMOSetTevColorIn (from the DEMO library). Similarly, if you need GXSetTevOp to be
able to affect texture component swap (under both platforms), you should use DEMOSetTevOp.

15.2 Bugs
All bugs are noted in the "HW2 Errata" section in this guide.

15.3 New HW2 features
The HW2 version of GX has the following added features:

• NBT indices can be separated.

• Fractional shift works with 8-bit vertex attributes.

• Renormalization and “post-transform” matrices added for texgens.

• Line (but not point) aspect ratio fixed for field-mode rendering.

• New TEV compare functions added.

• More flexibility in TEV for texture and raster color component swaps.

• New TEV “constant” color registers, component selectable.

• Subtractive “blend” mode.

• New texture copy types (for both color and Z).

• Scissor box offset.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

156 Graphics Library (GX)
The rest of this chapter describes these features in more detail.

15.3.1 NBT indices can be separated
In HW1, an indexed NBT attribute could be specified only by a single index pointing to a triple of NBT val-
ues. Due to the large number of possible NBT triples, indexed NBT normals were not very useful.

These indices can be separated on HW2. In addition, there is an implied offset for the different normals
that make up the triple. For separated indices, the attribute address is computed as follows:

Equation 39 - Attribute address for separated NBT indices
address = array_base + index * array_stride + (3 * NBT_offset + XYZ_component) * component_size

Where NBT_offset is N = 0, B = 1, T = 2

and XYZ_component is X = 0, Y = 1, Z = 2

The application specifies separated NBT indices by specifying a component count of GX_NRM_NBT3 in
GXSetVtxAttrFmt. When matched with a vertex descriptor that specifies indexed normals, this combina-
tion specifies that three separate indices will be provided instead of just one.

There are two possible ways to set up a normal table for NBT normals. One is to set up three interleaved
tables. This method is straightforward, since the built-in NBT offset takes care of choosing the right value
from the interleaved tables. Another method is to set up a single table (after all, a normal is a normal
regardless of the name). In order to implement this method, you must take into account the NBT offsets
and adjust the indices used in order to cancel out the offsets. Thus:

Equation 40 - Index adjustments for NBT offsets
index for N = index in table

index for B = ((index in table -1) + limit) % limit

index for T = ((index in table -2) + limit) % limit

Where limit = 256 for 8-bit indices, or 65536 for 16-bit indices

15.3.2 Fractional shift works with 8-bit vertex attributes
With HW1, 8-bit vertex attributes could only be whole numbers with a zero fractional shift. This has been
fixed for HW2; therefore, the fraction argument for GXSetVtxAttrFmt now applies for 8-bit attributes as
well as for 16-bit attributes.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

New HW2 features 157
15.3.3 Renormalization and “post-transform” matrices added for texgens
The following figure details the additional functionality in the texgen computation path for HW2:

Figure 73 - Texgen computation path

Whereas the HW1 texcoord computation path stops after the first matrix-vector multiply, HW2 adds an
optional renormalization step followed by a second “post-transform” matrix-vector multiply.

There are various ways to make use of these extra features. You can choose to provide twice as many
matrices for position transformation and use only the extra memory for texgens (you would select the iden-
tity matrix for the first transformation). You can also use this feature to provide more efficient projected tex-
tures. In this case, you use the position multiplied by the position matrix, then multiplied by a reprojection/
rescale matrix. This feature may also be used to make environment mapping easier. You use the normal
multiplied by a regular normal matrix (but stored in the Pos/Tex Mtx memory), then renormalized and multi-
plied by a post-transform matrix that rescales the normal into texture space.

This feature is accessed by using GXSetTexCoordGen2.

Code 120 - GXSetTexCoordGen2

GXSetTexCoordGen2(
 GXTexCoordID dst_coord,
 GXTexGenType func,
 GXTexGenSrc src_param,
 u32 mtx,
 GXBool renormalize,
 u32 pt_mtx);

GX_TG_POS

GX_TG_NRM

GX_TG_TEX

GX_TG_BINRM

GX_TG_TANGENT

Source Select

Optional
Renormalize

Pos/Tex Mtx Mem Post-Transform Mtx Mem

Mat-Vec
Multiply

Mat-Vec
Multiply

Row 0

Row 63

Row 0

Row 63

Computed
TexCoord
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

158 Graphics Library (GX)
15.3.4 Line (but not point) aspect ratio fixed for field-mode rendering
In field-mode and double-strike rendering, points and lines should be rendered with a different aspect ratio
than for frame rendering. This was fixed for lines in HW2, but not for points. You can set this feature
through the use of GXSetFieldMode. When the half_aspect_ratio parameter is set to GX_TRUE, lines are
drawn at half the regular height.

15.3.5 New TEV compare functions added
The compare functionality of GXSetTevClampMode has been removed. It has been replaced with new
TEV compare functionality that is specified on HW2 by additional GXTevOp's. When one of these functions
is specified, the TEV output equation is modified as follows:

Equation 41 - Regular TEV output
output = (d ± ((1 - c) * a + c * b) + bias) * scale

Equation 42 - Compare TEV output
output = d + ((a OP b) ? c:0)

You have a choice of 8-, 16-, or 24-bit wide compares, or an 8-bit per-component compare. When a com-
pare operation is performed, the output scale factor can only be set to one, and the bias can only be set to
zero.

The following tables describe the different operations. For the 16- and 24-bit compares, the MSB is listed
first.

Table 16 - Color or alpha compare operations

Color or Alpha Compare Operation

GX_TEV_COMP_R8_GT a[red] > b[red] ?

GX_TEV_COMP_R8_EQ a[red] == b[red] ?

GX_TEV_COMP_GR16_GT a[green, red] > b[green, red] ?

GX_TEV_COMP_GR16_EQ a[green, red] == b[green, red] ?

GX_TEV_COMP_BGR24_GT a[blue, green, red] > b[blue, green, red] ?

GX_TEV_COMP_BGR24_EQ a[blue, green, red] == b[blue, green, red] ?

Table 17 - Color-only compare operations

Color-only Compare Operation

GX_TEV_COMP_RGB8_GT per-component: a[component] > b[component] ?

GX_TEV_COMP_RGB8_EQ per-component: a[component] == b[component] ?

Table 18 - Alpha-only compare operations

Alpha-only Compare Operation

GX_TEV_COMP_A8_GT a[alpha] > b[alpha] ?

GX_TEV_COMP_A8_EQ a[alpha] == b[alpha] ?
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

New HW2 features 159
15.3.6 More flexibility in TEV for texture and raster color component swaps
In addition to being able to swap the texture color input to the TEV, you can now swap the rasterized color
input. Plus, you can select which color channel will be used for each component on a component-by-com-
ponent basis. This selection is done through a four-entry table. For each TEV stage, you may select an
entry from the table for the raster color input and an entry for the texture color input. This selection is
accomplished using the function GXSetTevSwapMode. The swap table is set up using the function
GXSetTevSwapModeTable.

Code 121 - GXSetTevSwapMode, GXSetTevSwapModeTable

GXSetTevSwapMode(
 GXTevStageID stage,
 GXTevSwapSel ras_sel,
 GXTevSwapSel tex_sel);

GXSetTevSwapModeTable(
 GXTevSwapSel select,
 GXTevColorChan red,
 GXTevColorChan green,
 GXTevColorChan blue,
 GXTevColorChan alpha);

15.3.7 New TEV “constant” color registers, component selectable
Four new registers are available as TEV inputs. They can be treated as RGBA registers, or as a set of four
scalar registers. These registers cannot be used as TEV outputs, and thus they are referred to as “con-
stant” (or “konstant”) registers, although they can easily be modified by a GX set command. New actual
constant values are provided in addition to the new register choices.

The new color inputs are selected through a two-level selection system. First, using GXSetTevColorIn
(or GXSetTevAlphaIn), you select the GX_CC_KONST (or GX_CA_KONST). Then, using
GXSetTevKColorSel (or GXSetTevKAlphaSel) you select the constant selection desired for each TEV
stage:

Table 19 - Color and alpha constant register values

Color KONST values Alpha KONST values Description

GX_TEV_KCSEL_1 GX_TEV_KASEL_1 1.0 scalar

GX_TEV_KCSEL_7_8 GX_TEV_KASEL_7_8 7/8 scalar

GX_TEV_KCSEL_3_4 GX_TEV_KASEL_3_4 3/4 scalar

GX_TEV_KCSEL_5_8 GX_TEV_KASEL_5_8 5/8 scalar

GX_TEV_KCSEL_1_2 GX_TEV_KASEL_1_2 1/2 scalar

GX_TEV_KCSEL_3_8 GX_TEV_KASEL_3_8 3/8 scalar

GX_TEV_KCSEL_1_4 GX_TEV_KASEL_1_4 1/4 scalar

GX_TEV_KCSEL_1_8 GX_TEV_KASEL_1_8 1/8 scalar

GX_TEV_KCSEL_K0 -- K0 RGB

GX_TEV_KCSEL_K1 -- K1 RGB

GX_TEV_KCSEL_K2 -- K2 RGB
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

160 Graphics Library (GX)
The command GXSetTevKColor may be used to modify the values of the four new constant color regis-
ters. GXSetTevKColor works the same way as GXSetTevColor. Unlike the existing TEV registers, the
new registers have only 8 bits per component.

15.3.8 Subtractive “blend” mode
HW2 provides a new “blend” operation which allows the computation:

Equation 43 - Subtractive blend operation
final pixel color = destination color - source color

You select this blend operation using GXSetBlendMode and choosing a blend_mode of
GX_BM_SUBTRACT.

Note: Unlike additive blending, you cannot specify source and destination factors (coefficients) in this
equation. This blend operation is also available with writes from the CPU to the EFB, and select-
able using GXPokeBlendMode.

GX_TEV_KCSEL_K3 -- K3 RGB

GX_TEV_KCSEL_K0_R GX_TEV_KASEL_K0_R K0 R scalar

GX_TEV_KCSEL_K1_R GX_TEV_KASEL_K1_R K1 R scalar

GX_TEV_KCSEL_K2_R GX_TEV_KASEL_K2_R K2 R scalar

GX_TEV_KCSEL_K3_R GX_TEV_KASEL_K3_R K3 R scalar

GX_TEV_KCSEL_K0_G GX_TEV_KASEL_K0_G K0 G scalar

GX_TEV_KCSEL_K1_G GX_TEV_KASEL_K1_G K1 G scalar

GX_TEV_KCSEL_K2_G GX_TEV_KASEL_K2_G K2 G scalar

GX_TEV_KCSEL_K3_G GX_TEV_KASEL_K3_G K3 G scalar

GX_TEV_KCSEL_K0_B GX_TEV_KASEL_K0_B K0 B scalar

GX_TEV_KCSEL_K1_B GX_TEV_KASEL_K1_B K1 B scalar

GX_TEV_KCSEL_K2_B GX_TEV_KASEL_K2_B K2 B scalar

GX_TEV_KCSEL_K3_B GX_TEV_KASEL_K3_B K3 B scalar

GX_TEV_KCSEL_K0_A GX_TEV_KASEL_K0_A K0 A scalar

GX_TEV_KCSEL_K1_A GX_TEV_KASEL_K1_A K1 A scalar

GX_TEV_KCSEL_K2_A GX_TEV_KASEL_K2_A K2 A scalar

GX_TEV_KCSEL_K3_A GX_TEV_KASEL_K3_A K3 A scalar

Table 19 - Color and alpha constant register values (Continued)

Color KONST values Alpha KONST values Description
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

New HW2 features 161
15.3.9 New texture copy types (for both color and Z)
HW2 provides new copy-texture output formats for the GXCopyTex operation. These are available through
the use of new GXTexFmt enumerated values, which are only valid for use with GXSetTexCopyDst.

15.3.10 Scissor box offset
HW2 provides a means of shifting the area of the scissor box within the space of the EFB memory. Nor-
mally, the upper-left corner of the scissor box maps to the same corner in EFB space. You can now specify
an offset that is subtracted from the computed pixel’s location before it is stored in the EFB. Thus, you can
shift the area of the scissor box up and/or left within the EFB space.

The main purpose of this feature is to simplify dual-pass rendering for antialiasing. You can now maintain
the same viewport for rendering the upper and lower halves of the screen. The upper half is drawn with the
scissor box set to the upper half of the viewport and the offset set to zero. The lower half is drawn by mov-
ing the scissor box to the bottom half of the viewport and adjusting the offset to place the scissor box area
within the EFB’s valid area (since the EFB is only half the screen height in antialiased frame-rendering
mode).

The offset is adjusted using the function GXSetScissorBoxOffset:

Code 122 - GXSetScissorBoxOffset

GXSetScissorBoxOffset(u32 xoff, u32 yoff);

Table 20 - New GXTexFmt enumerated values

Value Description

GX_CTF_R4 4b red channel

GX_CTF_RA4 4b red + 4b alpha

GX_CTF_RA8 8b red + 8b alpha

GX_CTF_A8 8b alpha

GX_CTF_R8 8b red

GX_CTF_G8 8b green

GX_CTF_B8 8b blue

GX_CTF_RG8 8b red + 8b green

GX_CTF_GB8 8b green + 8b blue

GX_CTF_Z4 4b Z

GX_CTF_Z8M 8b Z (middle byte)

GX_CTF_Z8L 8b Z (lower byte)

GX_CTF_Z16L 16b Z (lower part)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

162 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

163
16 Limitations
This chapter outlines features that disable other features, or only work in restricted cases.

16.1 Antialiasing
• Antialiasing can use pixel format GX_PF_RGB565_Z16 only.

• At peak, antialiased rendering runs at half the maximum fill rate of non-antialiased rendering, or 400
megapixels/second. (Beyond this reduction in the peak rate, the formula for computing the antialiased
rendering speed is the same as for non-antialiased rendering; see "9 Texture environment (TEV)" on
page 89 for more details.)

• Z textures cannot be copied from an antialiased frame buffer.

• Dithering doesn’t work with antialiasing.

16.2 CPU access to the frame buffer
The application must synchronize CPU access to the Embedded Frame Buffer (EFB) with normal render-
ing to the EFB.

16.3 Display lists
When creating a display list at runtime by calling GX functions bracketed by GXBeginDisplayList/
GXEndDisplayList, the following functions may not be used:

• GXBeginDisplayList.

• GXEndDisplayList.

• GXCallDisplayList.

In addition, the following types of functions cannot be placed inside of a display list:

• GXInit*

• GXRead*

• GXPeekARGB/GXPeekZ

• GXPokeARGB/GXPokeZ

• GXGet*

These may be executed while a display list is being created; however, they will not be put into the display
list.

16.4 Vertex performance
Vertex performance depends on the lighting and texture coordinate features selected. See the “Vertex Per-
formance Calculator” page in the Dolphin Reference Manual (HTML).

16.5 Matrix memory
Position and texture matrices share the same internal matrix memory. Normal matrices are stored in a sep-
arate memory.

16.6 Texture
Color index textures cannot be trilinearly-filtered.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

164 Graphics Library (GX)
Mipmaps using texel format GX_TF_RGBA8 require two cycles to filter. These cycles are internal to the tex-
ture filter hardware and do not effect the total number of TEV stages available.

16.7 Blending and logic operations
You must choose between blending and logical operations; you cannot do both at the same time.

16.8 Sharing main memory resources
While the embedded frame buffer (EFB) eases the bandwidth requirements of the main memory, there are
still several large main memory bandwidth hogs in the system, including the CPU, vertex input to the GP,
texture fetches, and copies from the EFB.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

165
17 Comparison to the Nintendo 64

17.1 Display lists vs. immediate mode
The Nintendo 64 (N64) used a double-buffered display list method to pass graphics data from the CPU to
the graphics processor (Reality Engine). The Nintendo GameCube system provides an immediate-mode
interface on initialization, but may be configured to use the double-buffered display list method as well. In
general, immediate mode is an easier way to bring up new applications, but display lists can provide more
performance in certain cases.

17.2 No microcoded processor
N64 had a microcoded geometry processor called the RSP. This provided some flexibility to optimize
microcode for a particular game. However, the relatively small instruction memory for the RSP reduced the
benefit somewhat.

Nintendo GameCube’s transform and lighting processor is hardwired, but very fast and very pipelined.
Although it is not a programmable processor, Nintendo GameCube’s transform and lighting hardware is
highly configurable and programmable, and it provides special features that would require many vector
CPU cycles to emulate.

N64 could direct the result of RSP processing (setup polygons) to a DRAM FIFO, which was read by the
display processor (RDP). By contrast, Nintendo GameCube has an internal FIFO (about 100 full-sized
primitives deep) between the geometry processor and the display processor and cannot save the interme-
diate results to main memory.

17.3 Vertex buffer
The N64 used a vertex buffer in the DMEM of the RSP to assemble primitives. The vertices were trans-
formed during the load, and then could be used to draw several triangles. The vertex buffer was small, and
required frequent loading. Model data had to be converted into chunks that fit into the vertex cache, which
sometimes meant reloading some vertices. Moreover, the vertex format was relatively fixed; it required a
microcode change to change the vertex format.

Nintendo GameCube, on the other hand, either loads vertex data directly into a streaming buffer, or
indexes vertex data through a vertex cache. The vertex data is transformed each time it is used in a primi-
tive. Nintendo GameCube also supports triangle strip and triangle fan primitives, which helps reduce the
vertex/primitive ratio. Thanks to its vertex cache, Nintendo GameCube only loads new vertex data when it
is not in the cache, reducing DRAM bandwidth. Because each component of a vertex can be indexed sep-
arately, only the unique data for each component needs to be stored in main memory.
Nintendo GameCube supports a flexible vertex format, both in terms of grouping attributes together, and in
quantizing attributes to reduce memory and bandwidth requirements.

17.4 Textures
The N64 had a small Texture Memory (TMEM), and only textures in that memory could be used during ren-
dering. Nintendo GameCube, on the other hand, has a large 1MB TMEM that can be used as multiple tex-
ture caches; it can also be preloaded with textures like the N64. The TMEM is entirely separate from the
embedded frame buffer (EFB).

Texture caches allow you to use large textures for rendering without loading the entire texture in TMEM. In
fact, only the texels that are visible and not already in the cache actually get loaded. Texture caches also
allow the entire main memory to be used as texture memory. Texture caches are more efficient when used
with mipmaps. Nintendo GameCube supports single-cycle mipmap filtering, whereas N64 required two
cycles for mipmap filtering. Nintendo GameCube also supports anisotropic texture filtering and various
Level of Detail controls.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

166 Graphics Library (GX)
Nintendo GameCube supports compressed textures. Compressed textures use only 4 bits/texel and have
color quality comparable to 16- to 24-bit uncompressed textures. Compressed textures only support a 1-bit
alpha. Nintendo GameCube also supports color index textures. Color lookup tables can range from 16 to
16,000 entries, by powers of 2. Color index textures can be 4, 8, or 16 (14 bits usable) bits/texel.

Nintendo GameCube supports Z buffering before texture application, which means that no texture will be
accessed unless the pixel is visible. This helps reduce texture bandwidth in scenes that have high depth
complexity.

17.5 Winding order
Nintendo GameCube defines frontfacing polygons as having a clockwise vertex order. N64 had the oppo-
site order; i.e., frontfacing polygons had a counter-clockwise vertex order. You can use the following code
to make Nintendo GameCube’s winding order the same as N64’s:

Code 123 - Aligning Nintendo GameCube winding order with N64

#define FRONT GX_CULL_BACK
#define BACK GX_CULL_FRONT
// use FRONT/BACK in your code

17.6 Video scaling
N64 scaled the video image as an operation on the display buffer (processing done by the VI).

Nintendo GameCube performs vertical scaling during the copy from EFB to the external frame buffer
(XFB). Nintendo GameCube performs horizontal scaling in the video (VI) hardware as the XFB is being
read for display.

17.7 Antialiasing
The N64 used a coverage-based method for edge antialiasing. This method had the advantage of using
only a few additional bits of frame buffer memory, but had many artifacts and, as a result, complicated Z
buffering and many of the blending functions.

Nintendo GameCube uses a sub-sampling method of antialiasing. This method uses twice the memory of
a non-antialiased frame buffer, but it is orthogonal with most of the Graphics Processor features and
results in better image quality.

17.8 Coplanar polygons
On the N64, coplanar polygons (also called geometric decals) used a fuzzy Z-compare method. This
method was prone to breaking when the decal was in the distance.

Nintendo GameCube implements coplanar polygons by defining a “reference plane.” The Z coefficients
computed at setup are locked so that subsequent triangles use the reference plane’s coefficients, guaran-
teeing that the same Z is produced at the same pixel. Reference planes may be invisible, if necessary.

17.9 FREE Z buffering, FREE blending
N64 kept its Z buffer and color buffer in main memory. As a result, applications that used Z buffering also
used more main memory bandwidth. Applications that did read/modify/write operations on the color buffer
used more main memory bandwidth than applications that just read the color buffer.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

FREE Z buffering, FREE blending 167
Nintendo GameCube’s embedded frame buffer (EFB) is a high-speed embedded 1T SRAM memory dedi-
cated to the color and Z buffers. This memory has been designed so that the pipeline can render at full
speed with both Z buffering and color read/modify/write operations enabled. Since this memory is embed-
ded in the Graphics Processor, no main memory bandwidth is used. Also, the Texture Memory (TMEM) is
physically separate from the EFB, so texture accesses can occur simultaneously with frame buffer
accesses.

In general, it is still a good idea when Z buffering to roughly sort 3D objects from nearest to farthest away.
This sort will reduce the number of texture fetches necessary for opaque objects; therefore, enable Z buff-
ering before texturing, especially for scenes with high depth complexity.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

168 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

169
18 Comparison to OpenGL

18.1 Vertex description
OpenGL allows a free-form vertex description, and has the notion of current vertex state. If some vertex
component is not specified, then the current vertex state for that component is used. The format of the ver-
tex is specified between glBegin/glEnd. This implies that each component of data has extra information
associated with it that specifies its type.

The Nintendo GameCube, on the other hand, specifies the format for every vertex between GXBegin/
GXEnd ahead of time and sends this information to the Graphics Processor. Every vertex between
GXBegin/GXEnd has the same format. Therefore, there is only vertex data produced between GXBegin/
GXEnd. The order of data in a vertex is also specified by the API. These limitations are minor, but allow
simpler and faster hardware implementation and lower bandwidth (no type for each data component).

OpenGL 1.1 has the concept of vertex arrays, in which arrays of vertex structures can be indexed to create
a primitive. Nintendo GameCube supports arrays of vertex components, requiring an index for each com-
ponent. This allows greater compression of model data. Nintendo GameCube can also support arrays of
vertex structures. In addition, Nintendo GameCube contains a vertex cache that caches each component
individually. In Nintendo GameCube, the Graphics Processor de-references the index, rather than the
CPU. The vertex cache enables a natural and flexible data representation, and lowers bandwidth require-
ments.

Nintendo GameCube can also mix together indexes and data in the command stream for maximum flexi-
bility.

18.2 Matrices
OpenGL includes several matrix stacks that the application can manipulate. Nintendo GameCube, on the
other hand, has a separate library, MTX, which can be used to create and manipulate matrix stacks. The
MTX library uses the CPU to do calculations and stores matrices in main memory. The GX API expresses
more directly the capability of the Graphics Processor. The Graphics Processor has an internal matrix
memory that can be indexed per-object or per-vertex. The GX API provides a way to load this matrix mem-
ory and set matrix indexes.

18.3 Lighting
OpenGL supports a per-vertex lighting model with emissive, ambient, specular, diffuse, and spotlight
effects. Many lights can contribute to the final vertex color. OpenGL supports two-sided lighting.

Nintendo GameCube supports lights with ambient, diffuse, specular, and spotlight effects for per-vertex
lights. Nintendo GameCube supports local lights with distance attenuation in hardware.
Nintendo GameCube can use the per-vertex attenuation to attenuate light textures. The GX API supports
an arbitrary number of lights, but the Graphics Processor supports only four lights at a time. Therefore,
Nintendo GameCube introduces the concept of light channels (up to four) in which a vertex color compo-
nent can be associated with one or more lights. These channels can be used as the vertex color, or they
can be passed down the pipeline to use in per-pixel calculations. In general, Nintendo GameCube com-
bines the capabilities of per-vertex lighting and texture lighting to make a more powerful lighting model.
Nintendo GameCube also allows CPU-computed lights and pre-lighting to be merged with lighting com-
puted by the Graphics Processor.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

170 Graphics Library (GX)
18.4 Texture coordinate generation
OpenGL supports planar and spherical projections to generate texture coordinates. The
Nintendo GameCube Graphics Processor (GP) supports transforming positions, normals, or texture coor-
dinates by an arbitrary matrix to generate texture coordinates. Nintendo GameCube also has a special
mode to generate texture coordinates from the results of per-vertex lighting. Bump mapping is another
special type of texture coordinate generation that is supported by Nintendo GameCube. These are all
methods supported by hardware—the CPU can also be used to generate texture coordinates based on
other algorithms.

18.5 Texture and multi-texture
OpenGL has recent support for multi-texture. Nintendo GameCube’s default texture configuration is very
similar to the OpenGL method. However, Nintendo GameCube has a much more configurable texture
pipeline than that specified by OpenGL. Input texture coordinates (up to eight), generated texture coordi-
nates (up to eight), textures (up to eight), and texture environment stages (up to 16) can all be arbitrarily
associated with each other. This allows for more flexibility in setting up a lighting equation, for example, or
to separate global and local game state.

Nintendo GameCube also supports sophisticated indirect-texture effects, Z textures, and texture creation
using the Graphics Processor.

18.6 Polygon offset
OpenGL supports the offsetting of polygon depth to prevent Z-fighting among coplanar polygons.
Nintendo GameCube uses a “reference plane” method to guarantee that coplanar faces generate exactly
the same depth for each pixel. The reference plane may be invisible.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

171
Appendix A. GX API functions
This appendix lists the GX API.

A.1 Cpu2Efb
Code 124 - Cpu2Efb

void GXPeekARGB(
 u16 x,
 u16 y,
 u32* color)

void GXPeekZ(
 u16 x,
 u16 y,
 f32* z)

void GXPokeAlphaMode(
 GXCompare func,
 u8 threshold)

void GXPokeAlphaRead(GXAlphaReadMode mode)

void GXPokeAlphaUpdate(GXBool update_enable)

void GXPokeARGB(
 u16 x,
 u16 y,
 u32 color)

void GXPokeBlendMode(
 GXBlendMode type,
 GXBlendFactor src_factor,
 GXBlendFactor dst_factor,
 GXLogicOp op)

void GXPokeColorUpdate(GXBool update_enable)

void GXPokeDither(GXBool dither)

void GXPokeDstAlpha(
 GXBool enable,
 u8 alpha)

void GXPokeZ(
 u16 x,
 u16 y,
 f32 z)

void GXPokeZMode(
 GXBool compare_enable,
 GXCompare func)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

172 Graphics Library (GX)
A.2 Culling
Code 125 - Culling

void GXGetCullMode(GXCullMode* mode)

void GXGetScissor(
 u32* xOrig,
 u32* yOrig,
 u32* wd,
 u32* ht)

void GXSetCoPlanar(GXBool enable)

void GXSetCullMode(GXCullMode mode)

void GXSetScissor(
 u32 xOrig,
 u32 yOrig,
 u32 wd,
 u32 ht)

A.3 DisplayList
Code 126 - DisplayList

void GXBeginDisplayList(
 void* list,
 u32 size)

void GXCallDisplayList(
 void* list,
 u32 nbytes)

u32 GXEndDisplayList(void)

A.4 Draw
Code 127 - Draw

void GXDrawCube(void)

void GXDrawCylinder(u8 numEdges)

void GXDrawDodeca(void)

void GXDrawIcosahedron(void)

void GXDrawOctahedron(void)

void GXDrawSphere(
 u8 numMajor,
 u8 numMinor)

void GXDrawSphere1(u8 depth)

void GXDrawTorus(
 f32 rc,
 u8 numc,
 u8 numt)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Framebuffer 173
A.5 Framebuffer
Code 128 - Framebuffer

void GXAdjustForOverscan(
 GXRenderModeObj* rmin,
 GXRenderModeObj* rmout,
 u16 hor,
 u16 ver)

void GXClearBoundingBox(void)

void GXCopyDisp(
 void* dest,
 GXBool clear)

void GXCopyTex(
 void* dest,
 GXBool clear)

void GXReadBoundingBox(
 u16* left,
 u16* top,
 u16* right,
 u16* bottom)

void GXSetCopyClamp(GXFBClamp clamp)

void GXSetCopyClear(
 GXColor clear_clr,
 u32 clear_z)

void GXSetCopyFilter(
 GXBool aa,
 u8 sample_pattern[12][2],
 GXBool vf,
 u8 vfilter[7])

void GXSetDispCopyDst(
 u16 wd,
 u16 ht)

void GXSetDispCopyFrame2Field(GXCopyMode mode)

void GXSetDispCopyGamma(GXGamma gamma)

void GXSetDispCopySrc(
 u16 left,
 u16 top,
 u16 wd,
 u16 ht)

u32 GXSetDispCopyYScale(f32 yscale)

void GXSetTexCopyDst(
 u16 wd,
 u16 ht,
 GXTexFmt fmt,
 GXBool mipmap)

void GXSetTexCopySrc(
 u16 left,
 u16 top,
 u16 wd,
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

174 Graphics Library (GX)
 u16 ht)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Geometry 175
A.6 Geometry
Code 129 - Geometry

void GXBegin(
 GXPrimitive type,
 GXVtxFmt vtxfmt,
 u16 nverts)

void GXClearVtxDesc(void)

void GXColor4u8 (u8 r, u8 b, u8 b, u8 a);
void GXColor3u8 (u8 r, u8 g, u8 b);
void GXColor1u32(u32 clr);
void GXColor1u16(u16 clr);
void GXColor1x16(u16 index);
void GXColor1x8 (u8 index)

void GXEnableTexOffsets (
 GXTexCoordID coord,
 GXBool line_enable,
 GXBool point_enable)

void GXEnd(void)

void GXGetArray(
 GXAttr attr,
 void* base_ptr,
 u8 stride)

void GXGetLineWidth(
 u8* width,
 GXTexOffset* tex_offsets)

void GXGetPointSize(
 u8* size,
 GXTexOffset* tex_offsets)

void GXGetVtxAttrFmt(
 GXVtxFmt vtxfmt,
 GXAttr attr,
 GXCompCnt* cnt,
 GXCompType* type,
 u8* frac)

void GXGetVtxAttrFmtv(
 GXVtxFmt vtxfmt,
 GXVtxAttrFmtList* list)

void GXGetVtxDesc(
 GXAttr attr,
 GXAttrType* type)

void GXGetVtxDescv(GXVtxDescList* attr_list)

void GXInvalidateVtxCache(void)

void GXMatrixIndex1u8 (u8 index);
void GXMatrixIndex1x8 (u8 index)

void GXNormal3f32(f32 x, f32 y, f32 z);
void GXNormal3s16(s16 x, s16 y, s16 z);
void GXNormal3s8 (s8 x, s8 y, s8 z);
void GXNormal1x16(u16 index);
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

176 Graphics Library (GX)
void GXNormal1x8 (u8 index)

void GXSetArray(
 GXAttr attr,
 void* base_ptr,
 u8 stride)

void GXSetLineWidth(
 u8 width,
 GXTexOffset tex_offsets)

void GXSetNumTexGens(u8 nTexGens)

void GXSetPointSize(
 u8 size,
 GXTexOffset tex_offsets)

void GXSetTexCoordGen(
 GXTexCoordID dst_coord,
 GXTexGenType func,
 GXTexGenSrc src_param,
 u32 mtx)

void GXSetVtxAttrFmt(
 GXVtxFmt vtxfmt,
 GXAttr attr,
 GXCompCnt cnt,
 GXCompType type,
 u8 frac)

void GXSetVtxAttrFmtv(
 GXVtxFmt vtxfmt,
 GXVtxAttrFmtList* list)

void GXSetVtxDesc(
 GXAttr attr,
 GXAttrType type)

void GXSetVtxDescv(GXVtxDescList* attr_list)

void GXTexCoord2f32(f32 s, f32 t);
void GXTexCoord2u16(u16 s, u16 t);
void GXTexCoord2s16(s16 s, s16 t);
void GXTexCoord2u8 (u8 s, u8 t);
void GXTexCoord2s8 (s8 s, s8 t);
void GXTexCoord1f32(f32 s, f32 t);
void GXTexCoord1u16(u16 s, u16 t);
void GXTexCoord1s16(s16 s, s16 t);
void GXTexCoord1u8 (u8 s, u8 t);
void GXTexCoord1s8 (s8 s, s8 t);
void GXTexCoord1x16(u16 index);
void GXTexCoord1x8 (u8 index)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GfxFIFO 177
A.7 GfxFIFO
Code 130 - GfxFIFO

void GXDisableBreakPt(void)

void GXEnableBreakPt(void* break_pt)

GXFifoObj* GXGetCPUFifo(void)

OSThread* GXGetCurrentGXThread (void)

void* GXGetFifoBase(GXFifoObj* fifo)

void GXGetFifoLimits(
 GXFifoObj* fifo,
 u32* hi,
 u32* lo)

void GXGetFifoPtrs(
 GXFifoObj* fifo,
 void** read_ptr,
 void** write_ptr)

u32 GXGetFifoSize(GXFifoObj* fifo)

void GXGetFifoStatus(
 GXFifoObj* fifo,
 GXBool* overhi,
 GXBool* underlow,
 u32* fifo_cnt,
 GXBool* cpu_write,
 GXBool* gp_read,
 GXBool* fifowrap)

GXFifoObj* GXGetGPFifo(void)

void GXGetGPStatus(
 GXBool* overhi,
 GXBool* underlow,
 GXBool* readIdle,
 GXBool* cmdIdle,
 GXBool* brkpt)

u32 GXGetOverflowCount(void)

void GXInitFifoBase(
 GXFifoObj* fifo,
 void* base,
 u32 size)

void GXInitFifoLimits(
 GXFifoObj* fifo,
 u32 hi_water_mark,
 u32 lo_water_mark)

void GXInitFifoPtrs(
 GXFifoObj* fifo,
 void* read_ptr,
 void* write_ptr)

u32 GXResetOverflowCount(void)

void GXSaveCPUFifo(GXFifoObj* fifo)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

178 Graphics Library (GX)
void GXSetCPUFifo(GXFifoObj* fifo)

void GXSaveGPFifo(GXFifoObj* fifo)

void GXSetGPFifo(GXFifoObj* fifo)

OSThread* GXSetCurrentGXThread (void)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Indirect 179
A.8 Indirect
Code 131 - Indirect

void GXSetIndTexCoordScale(
 GXIndTexStageID ind_stage,
 GXIndTexScale scale_s,
 GXIndTexScale scale_t)

void GXSetIndTexMtx(
 GXIndTexMtxID mtx_sel,
 f32 offset_mtx[2][3],
 s8 scale_exp)

void GXSetIndTexOrder(
 GXIndTexStageID ind_stage,
 GXTexCoordID tex_coord,
 GXTexMapID tex_map)

void GXSetNumIndStages(u8 nstages)

void GXSetTevDirect(GXTevStageID tev_stage)

void GXSetTevIndBumpST(
 GXTevStageID tev_stage,
 GXIndTexStageID ind_stage,
 GXIndTexMtxID matrix_sel)

void GXSetTevIndBumpXYZ(
 GXTevStageID tev_stage,
 GXIndTexStageID ind_stage,
 GXIndTexMtxID matrix_sel)

void GXSetTevIndirect (
 GXTevStageID tev_stage,
 GXIndTexStageID ind_stage,
 GXIndTexFormat format,
 GXIndTexBiasSel bias_sel,
 GXIndTexMtxID matrix_sel,
 GXIndTexWrap wrap_s,
 GXIndTexWrap wrap_t,
 GXBool add_prev,
 GXBool utc_lod,
 GXIndTexAlphaSel alpha_sel)

void GXSetTevIndRepeat(GXTevStageID tev_stage)

void GXSetTevIndTile(
 GXTevStageID tev_stage,
 GXIndTexStageID ind_stage,
 u16 tilesize_s,
 u16 tilesize_t,
 u16 tilespacing_s,
 u16 tilespacing_t,
 GXIndTexFormat format,
 GXIndTexMtxID matrix_sel,
 GXIndTexBiasSel bias_sel,
 GXIndTexAlphaSel alpha_sel)

void GXSetTevIndWarp(
 GXTevStageID tev_stage,
 GXIndTexStageID ind_stage,
 GXBool signed_offsets,
 GXBool replace_mode,
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

180 Graphics Library (GX)
 GXIndTexMtxID matrix_sel)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Lighting 181
A.9 Lighting
Code 132 - Lighting

void GXGetLightAttnA(
 GXLightObj* lt_obj,
 f32* a0,
 f32* a1,
 f32* a2)

void GXGetLightAttnK(
 GXLightObj* lt_obj,
 f32* k0,
 f32* k1,
 f32* k2)

void GXGetLightColor(
 GXLightObj* lt_obj,
 GXColor* color)

void GXGetLightDir(
 GXLightObj* lt_obj,
 f32* nx,
 f32* ny,
 f32* nz)

#define GXGetLightDirv(lo, vec) \
(GXGetLightDir((lo), (f32*)(vec), (f32*)(vec)+1, (f32*)(vec)+2))

void GXGetLightPos(
 GXLightObj* lt_obj,
 f32* x,
 f32* y,
 f32* z)

#define GXGetLightPosv(lo, vec) \
(GXGetLightPos((lo), (f32*)(vec), (f32*)(vec)+1, (f32*)(vec)+2))

void GXInitLightAttn(
 GXLightObj* lt_obj,
 f32 a0,
 f32 a1,
 f32 a2,
 f32 k0,
 f32 k1,
 f32 k2)

void GXInitLightAttnA(
 GXLightObj* lt_obj,
 f32 a0,
 f32 a1,
 f32 a2)

void GXInitLightAttnK(
 GXLightObj* lt_obj,
 f32 k0,
 f32 k1,
 f32 k2)

void GXInitLightColor(
 GXLightObj* lt_obj,
 GXColor color)

void GXInitLightDir(
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

182 Graphics Library (GX)
 GXLightObj* lt_obj,
 f32 nx,
 f32 ny,
 f32 nz)

#define GXInitLightDirv(lo, vec) \
(GXInitLightDir((lo), *(f32*)(vec), *((f32*)(vec)+1), *((f32*)(vec)+2))

void GXInitLightDistAttn(
 GXLightObj* lt_obj,
 f32 ref_distance,
 f32 ref_brightness,
 GXDistAttnFn dist_func)

void GXInitLightPos(
 GXLightObj* lt_obj,
 f32 x,
 f32 y,
 f32 z)

#define GXInitLightPosv(lo, vec) \
(GXInitLightPos((lo), *(f32*)(vec), *((f32*)(vec)+1), *((f32*)(vec)+2))

#define GXInitLightShininess(lobj, shininess) \
 GXInitLightAttn(lobj, 0.0F, 0.0F, 1.0F, \
 (shininess)/2.0F, 0.0F, \
 1.0F-(shininess)/2.0F)

void GXInitLightSpot(
 GXLightObj* lt_obj,
 f32 cutoff,
 GXSpotFn spot_func)

void GXInitSpecularDir(
 GXLightObj* lt_obj,
 f32 nx,
 f32 ny,
 f32 nz)

void GXInitSpecularDirv(lo, vec) \ (
GXInitSpecularDir((lo), *(f32*)(vec), *((f32*)(vec)+1), *((f32*)(vec)+2))

void GXLoadLightObjImm(
 GXLightObj* lt_obj,
 GXLightID light)

void GXLoadLightObjIndx(
 u32 lt_obj_indx,
 GXLightID light)

void GXSetChanAmbColor(
 GXChannelID chan,
 GXColor amb_color)

void GXSetChanCtrl(
 GXChannelID chan,
 GXBool enable,
 GXColorSrc amb_src,
 GXColorSrc mat_src,
 GXLightID light_mask,
 GXDiffuseFn diff_fn,
 GXAttnFn attn_fn)

void GXSetChanMatColor(
 GXChannelID chan,
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Management 183
 GXColor mat_color)

void GXSetNumChans(u8 nChans)

A.10 Management
Code 133 - Management

void GXAbortFrame(void)

void GXDrawDone(void)

void GXFlush(void)

GXFifoObj* GXInit(
 void* base,
 u32 size)

void GXPixModeSync(void)

u16 GXReadDrawSync(void)

void GXSetDrawDone(void)

typedef void (*GXDrawDoneCallback)(void);
GXDrawDoneCallback GXSetDrawDoneCallback(GXDrawDoneCallback cb)

void GXSetDrawSync(u16 token)

typedef void (*GXDrawSyncCallback)(u16 token);
GXDrawSyncCallback GXSetDrawSyncCallback(GXDrawSyncCallback cb)

void GXSetVerifyLevel(u8 level)

void GXTexModeSync(void)

void GXWaitDrawDone(void)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

184 Graphics Library (GX)
A.11 Performance
Code 134 - Performance

u32 GXGetPerfMetric(GXPerf perf)

u32 GXReadClksPerVtx(void)

u32 GXReadGP0Metric(GXPerf0 perf0)

u32 GXReadGP1Metric(GXPerf1 perf1)

void GXReadGPMetric(
 GXPerf0 perf0,
 u32* cnt0,
 GXPerf1 perf1,
 u32* cnt1)

u32 GXReadMemMetric(GXMem perf)

void GXReadPixMetric(
 u32* top_pixels_in,
 u32* top_pixels_out,
 u32* bot_pixels_in,
 u32* bot_pixels_out,
 u32* clr_pixels_in,
 u32* copy_clks)

void GXReadVCacheMetric(
 GXVCachePerf attr,
 u32* check,
 u32* miss,
 u32* stall)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

PixelProc 185
A.12 PixelProc
Code 135 - PixelProc

void GXInitFogAdjTable(
 GXFogAdjTable* table,
 u16 width,
 f32 projmtx[4][4])

void GXSetAlphaUpdate(GXBool update_enable)

void GXSetBlendMode(
 GXBlendMode type,
 GXBlendFactor src_factor,
 GXBlendFactor dst_factor,
 GXLogicOp op)

void GXSetColorUpdate(GXBool update_enable)

void GXSetDither(GXBool dither)

void GXSetDstAlpha(
 GXBool enable,
 u8 alpha)

void GXSetFieldMask(
 GXBool odd_mask,
 GXBool even_mask)

void GXSetFieldMode(
 GXBool field_mode,
 GXBool half_aspect_ratio)

void GXSetFog(
 GXFogType type,
 f32 startz,
 f32 endz,
 f32 nearz,
 f32 farz,
 GXColor color)

void GXSetFogRangeAdj(
 GXBool enable,
 u16 center,
 GXFogAdjTable* table)

void GXSetPixelFmt(
 GXPixelFmt pix_fmt,
 GXZFmt16 z_fmt)

void GXSetZCompLoc(GXBool before_tex)

void GXSetZMode(
 GXBool compare_enable,
 GXCompare func,
 GXBool update_enable)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

186 Graphics Library (GX)
A.13 Tev
Code 136 - Tev

void GXSetAlphaCompare(
 GXCompare comp0,
 u8 ref0,
 GXAlphaOp op,
 GXCompare comp1,
 u8 ref1)

void GXSetNumTevStages(u8 nStages)

void GXSetTevAlphaIn(
 GXTevStageID stage,
 GXTevAlphaArg a,
 GXTevAlphaArg b,
 GXTevAlphaArg c,
 GXTevAlphaArg d)

void GXSetTevAlphaOp(
 GXTevStageID stage,
 GXTevOp op,
 GXTevBias bias,
 GXTevScale scale,
 GXBool clamp,
 GXTevRegID out_reg)

void GXSetTevClampMode(
 GXTevStageID stage,
 GXTevClampMode mode)

void GXSetTevColor(
 GXTevRegID id,
 GXColor color)

void GXSetTevColorIn(
 GXTevStageID stage,
 GXTevColorArg a,
 GXTevColorArg b,
 GXTevColorArg c,
 GXTevColorArg d)

void GXSetTevColorOp(
 GXTevStageID stage,
 GXTevOp op,
 GXTevBias bias,
 GXTevScale scale,
 GXBool clamp,
 GXTevRegID out_reg)

void GXSetTevColorS10(
 GXTevRegID id,
 GXColorS10 color)

void GXSetTevOp(
 GXTevStageID id,
 GXTevMode mode)

void GXSetTevOrder(
 GXTevStageID stage,
 GXTexCoordID coord,
 GXTexMapID map,
 GXChannelID color)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Tev 187
void GXSetZTexture(
 GXZTexOp op,
 GXTexFmt fmt,
 u32 bias)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

188 Graphics Library (GX)
A.14 Texture
Code 137 - Texture

u32 GXGetTexBufferSize(
 u16 width,
 u16 height,
 u32 format,
 GXBool mipmap,
 u8 max_lod)

void GXGetTexObjAll(
 GXTexObj* obj,
 void** image_ptr,
 u16* width,
 u16* height,
 GXTexFmt* format,
 GXTexWrapMode* wrap_s,
 GXTexWrapMode* wrap_t,
 GXBool* mipmap)

void* GXGetTexObjData(GXTexObj* obj)

GXTexFmt GXGetTexObjFmt(GXTexObj* obj)

u16 GXGetTexObjHeight(GXTexObj* obj)

GXBool GXGetTexObjMipMap(GXTexObj* obj)

void *GXGetTexObjUserData(GXTexObj* obj)

u16 GXGetTexObjWidth(GXTexObj* obj)

GXTexWrapMode GXGetTexObjWrapS(GXTexObj* obj)

GXTexWrapMode GXGetTexObjWrapT(GXTexObj* obj)

void GXGetTlutObjAll(
 GXTlutObj* tlut_obj,
 void** lut,
 GXTlutFmt* fmt,
 u16* n_entries)

void* GXGetTlutObjData(GXTlutObj* tlut_obj)

GXTlutFmt GXGetTlutObjFmt(GXTlutObj* tlut_obj)

u16 GXGetTlutObjNumEntries(GXTlutObj* tlut_obj)

void GXInitTexCacheRegion(
 GXTexRegion* region,
 GXBool is_32b_mipmap,
 u32 tmem_even,
 GXTexCacheSize size_even,
 u32 tmem_odd,
 GXTexCacheSize size_odd)

void GXInitTexObj(
 GXTexObj* obj,
 void* image_ptr,
 u16 width,
 u16 height,
 GXTexFmt format,
 GXTexWrapMode wrap_s,
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Texture 189
 GXTexWrapMode wrap_t,
 GXBool mipmap)

void GXInitTexObjCI(
 GXTexObj* obj,
 void* image_ptr,
 u16 width,
 u16 height,
 GXCITexFmt format,
 GXTexWrapMode wrap_s,
 GXTexWrapMode wrap_t,
 GXBool mipmap,
 u32 tlut_name)

void GXInitTexObjLOD(
 GXTexObj* obj,
 GXTexFilter min_filt,
 GXTexFilter mag_filt,
 f32 min_lod,
 f32 max_lod,
 f32 lod_bias,
 GXBool bias_clamp,
 GXBool do_edge_lod,
 GXAnisotropy max_aniso)

void GXInitTexObjUserData(
 GXTexObj* obj,
 void* user_data)

void GXInitTexPreLoadRegion(
 GXTexRegion* region,
 u32 tmem_even,
 u32 size_even,
 u32 tmem_odd,
 u32 size_odd)

void GXInitTlutObj(
 GXTlutObj* tlut_obj,
 void* lut,
 GXTlutFmt fmt,
 u16 n_entries)

void GXInitTlutRegion(
 GXTlutRegion* region,
 u32 tmem_addr,
 GXTlutSize tlut_size)

void GXInvalidateTexAll(void)

void GXInvalidateTexRegion(GXTexRegion* region)

void GXLoadTexObj(
 GXTexObj* obj,
 GXTexMapID id)

void GXLoadTexObjPreLoaded(
 GXTexObj* obj,
 GXTexRegion* region,
 GXTexMapID id)

void GXLoadTlut(
 GXTlutObj* tlut_obj,
 u32 tlut_name)

void GXPreLoadEntireTexture(
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

190 Graphics Library (GX)
 GXTexObj* tex_obj,
 GXTexRegion* region)

void GXSetTexCoordScaleManually(
 GXTexCoordID texcoord,
 GXBool enable,
 u16 ss,
 u16 ts)

GXTexRegionCallback GXSetTexRegionCallback(GXTexRegionCallback f)

GXTlutRegionCallback GXSetTlutRegionCallBack(GXTlutRegionCallback f)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Transform 191
A.15 Transform
Code 138 - Transform

void GXGetProjectionv(f32* p)

void GXGetViewport(
 f32* xOrig,
 f32* yOrig,
 f32* wd,
 f32* ht,
 f32* nearZ,
 f32* farZ)

void GXGetViewportv(f32* vp)

void GXLoadNrmMtxImm(
 f32 mtxPtr[3][4],
 u32 id)

void GXLoadNrmMtxImm3x3(
 f32 mtxPtr[3][3],
 u32 id)

void GXLoadNrmMtxIndx3x3(
 u16 mtxIndx,
 u32 id)

void GXLoadPosMtxImm(
 f32 mtxPtr[3][4],
 u32 id)

void GXLoadPosMtxIndx(
 u16 mtxIndx,
 u32 id)

void GXLoadTexMtxImm(
 f32 mtxPtr[][4],
 u32 id,
 GXTexMtxType type)

void GXLoadTexMtxIndx(
 u16 mtxIndx,
 u32 id,
 GXTexMtxType type)

void GXProject(
 f32 mx,
 f32 my,
 f32 mz,
 f32 mtx[3][4],
 f32* p,
 f32* vp,
 f32* sx,
 f32* sy,
 f32* sz)

void GXSetCurrentMtx(u32 id)

void GXSetProjection(
 f32 mtx[4][4],
 GXProjectionType type)

void GXSetViewport(
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

192 Graphics Library (GX)
 f32 xOrig,
 f32 yOrig,
 f32 wd,
 f32 ht,
 f32 nearZ,
 f32 farZ)

void GXSetViewportJitter(
 f32 xOrig,
 f32 yOrig,
 f32 wd,
 f32 ht,
 f32 nearZ,
 f32 farZ,
 u32 field)

void GXSetViewportv(f32* vp)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

193
Appendix B. GXInit defaults
This appendix lists state set by GXInit.

Code 139 - GXInit defaults

// Color definitions

#define GX_DEFAULT_BG {64, 64, 64, 255}
#define BLACK {0, 0, 0, 0}
#define WHITE {255, 255, 255, 255}

 //
 // Render Mode
 //
 // (set 'rmode' based upon VIGetTvFormat(); code not shown)

 //
 // Geometry and Vertex
 //
 GXSetTexCoordGen(GX_TEXCOORD0, GX_TG_MTX2x4, GX_TG_TEX0, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD1, GX_TG_MTX2x4, GX_TG_TEX1, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD2, GX_TG_MTX2x4, GX_TG_TEX2, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD3, GX_TG_MTX2x4, GX_TG_TEX3, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD4, GX_TG_MTX2x4, GX_TG_TEX4, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD5, GX_TG_MTX2x4, GX_TG_TEX5, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD6, GX_TG_MTX2x4, GX_TG_TEX6, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD7, GX_TG_MTX2x4, GX_TG_TEX7, GX_IDENTITY);
 GXSetNumTexGens(1);
 GXClearVtxDesc();
 GXInvalidateVtxCache();

 GXSetLineWidth(6, GX_TO_ZERO);
 GXSetPointSize(6, GX_TO_ZERO);
 GXEnableTexOffsets(GX_TEXCOORD0, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD1, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD2, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD3, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD4, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD5, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD6, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD7, GX_DISABLE, GX_DISABLE);

 //
 // Transformation and Matrix
 //
 // (initialize 'identity_mtx' to identity; code not shown)

 // Note: projection matrix is not initialized!
 GXLoadPosMtxImm(identity_mtx, GX_PNMTX0);
 GXLoadNrmMtxImm(identity_mtx, GX_PNMTX0);
 GXSetCurrentMtx(GX_PNMTX0);
 GXLoadTexMtxImm(identity_mtx, GX_IDENTITY, GX_MTX3x4);
 GXLoadTexMtxImm(identity_mtx, GX_PTIDENTITY, GX_MTX3x4);
 GXSetViewport(0.0F, // left
 0.0F, // top
 (float)rmode->fbWidth, // width
 (float)rmode->xfbHeight, // height
 0.0F, // nearz
 1.0F); // farz

 //
 // Clipping and Culling
 //
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

194 Graphics Library (GX)
 GXSetCoPlanar(GX_DISABLE);
 GXSetCullMode(GX_CULL_BACK);
 GXSetClipMode(GX_CLIP_ENABLE);
 GXSetScissor(0, 0, (u32)rmode->fbWidth, (u32)rmode->efbHeight);
 GXSetScissorBoxOffset(0, 0);

 //
 // Lighting - pass vertex color through
 //
 GXSetNumChans(0); // no colors by default

 GXSetChanCtrl(
 GX_COLOR0A0,
 GX_DISABLE,
 GX_SRC_REG,
 GX_SRC_VTX,
 GX_LIGHT_NULL,
 GX_DF_NONE,
 GX_AF_NONE);

 GXSetChanAmbColor(GX_COLOR0A0, BLACK);
 GXSetChanMatColor(GX_COLOR0A0, WHITE);

 GXSetChanCtrl(
 GX_COLOR1A1,
 GX_DISABLE,
 GX_SRC_REG,
 GX_SRC_VTX,
 GX_LIGHT_NULL,
 GX_DF_NONE,
 GX_AF_NONE);

 GXSetChanAmbColor(GX_COLOR1A1, BLACK);
 GXSetChanMatColor(GX_COLOR1A1, WHITE);

 //
 // Texture
 //
 GXInvalidateTexAll();

 // Allocate 8 32k caches for RGBA texture mipmaps.
 // Equal size caches to support 32b RGBA textures.
 //
 // (code not shown)

 // Allocate color index caches in low bank of TMEM.
 // Each cache is 32kB.
 // Even and odd regions should be allocated on different address.
 //
 // (code not shown)

 // Allocate TLUTs, 16 256-entry TLUTs and 4 1K-entry TLUTs.
 // 256-entry TLUTs are 8kB, 1k-entry TLUTs are 32kB.
 //
 // (code not shown)

 //
 // Set texture region and tlut region Callbacks
 //
 GXSetTexRegionCallback(__GXDefaultTexRegionCallback);
 GXSetTlutRegionCallback(__GXDefaultTlutRegionCallback);

 //
 // Texture Environment
 //
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GXInit defaults 195
 GXSetTevOrder(GX_TEVSTAGE0, GX_TEXCOORD0, GX_TEXMAP0, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE1, GX_TEXCOORD1, GX_TEXMAP1, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE2, GX_TEXCOORD2, GX_TEXMAP2, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE3, GX_TEXCOORD3, GX_TEXMAP3, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE4, GX_TEXCOORD4, GX_TEXMAP4, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE5, GX_TEXCOORD5, GX_TEXMAP5, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE6, GX_TEXCOORD6, GX_TEXMAP6, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE7, GX_TEXCOORD7, GX_TEXMAP7, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE8, GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE9, GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE10,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE11,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE12,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE13,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE14,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE15,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetNumTevStages(1);
 GXSetTevOp(GX_TEVSTAGE0, GX_REPLACE);
 GXSetAlphaCompare(GX_ALWAYS, 0, GX_AOP_AND, GX_ALWAYS, 0);
 GXSetZTexture(GX_ZT_DISABLE, GX_TF_Z8, 0);

 for (i = GX_TEVSTAGE0; i < GX_MAX_TEVSTAGE; i++) {
 GXSetTevKColorSel((GXTevStageID) i, GX_TEV_KCSEL_1_4);
 GXSetTevKAlphaSel((GXTevStageID) i, GX_TEV_KASEL_1);
 GXSetTevSwapMode ((GXTevStageID) i, GX_TEV_SWAP0, GX_TEV_SWAP0);
 }
 GXSetTevSwapModeTable(GX_TEV_SWAP0,
 GX_CH_RED, GX_CH_GREEN, GX_CH_BLUE, GX_CH_ALPHA);
 GXSetTevSwapModeTable(GX_TEV_SWAP1,
 GX_CH_RED, GX_CH_RED, GX_CH_RED, GX_CH_ALPHA);
 GXSetTevSwapModeTable(GX_TEV_SWAP2,
 GX_CH_GREEN, GX_CH_GREEN, GX_CH_GREEN, GX_CH_ALPHA);
 GXSetTevSwapModeTable(GX_TEV_SWAP3,
 GX_CH_BLUE, GX_CH_BLUE, GX_CH_BLUE, GX_CH_ALPHA);

 // Indirect Textures.
 for (i = GX_TEVSTAGE0; i < GX_MAX_TEVSTAGE; i++) {
 GXSetTevDirect((GXTevStageID) i);
 }
 GXSetNumIndStages(0);
 GXSetIndTexCoordScale(GX_INDTEXSTAGE0, GX_ITS_1, GX_ITS_1);
 GXSetIndTexCoordScale(GX_INDTEXSTAGE1, GX_ITS_1, GX_ITS_1);
 GXSetIndTexCoordScale(GX_INDTEXSTAGE2, GX_ITS_1, GX_ITS_1);
 GXSetIndTexCoordScale(GX_INDTEXSTAGE3, GX_ITS_1, GX_ITS_1);

 //
 // Pixel Processing
 //
 GXSetFog(GX_FOG_NONE, 0.0F, 1.0F, 0.1F, 1.0F, BLACK);
 GXSetFogRangeAdj(GX_DISABLE, 0, 0);
 GXSetBlendMode(GX_BM_NONE,
 GX_BL_SRCALPHA, // src factor
 GX_BL_INVSRCALPHA, // dst factor
 GX_LO_CLEAR);
 GXSetColorUpdate(GX_ENABLE);
 GXSetAlphaUpdate(GX_ENABLE);
 GXSetZMode(GX_TRUE, GX_LEQUAL, GX_TRUE);
 GXSetZCompLoc(GX_TRUE); // before texture
 GXSetDither(GX_ENABLE);
 GXSetDstAlpha(GX_DISABLE, 0);
 GXSetPixelFmt(GX_PF_RGB8_Z24, GX_ZC_LINEAR);
 GXSetFieldMask(GX_ENABLE, GX_ENABLE);
 GXSetFieldMode((GXBool)(rmode->field_rendering),
 ((rmode->viHeight == 2*rmode->xfbHeight) ?
 GX_ENABLE : GX_DISABLE));
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

196 Graphics Library (GX)
 //
 // Framebuffer
 //
 GXSetCopyClear(GX_DEFAULT_BG, GX_MAX_Z24);
 GXSetDispCopySrc(0, 0, rmode->fbWidth, rmode->efbHeight);
 GXSetDispCopyDst(rmode->fbWidth, rmode->efbHeight);
 GXSetDispCopyYScale((f32)(rmode->xfbHeight) / (f32)(rmode->efbHeight));
 GXSetCopyClamp((GXFBClamp)(GX_CLAMP_TOP | GX_CLAMP_BOTTOM));
 GXSetCopyFilter(rmode->aa, rmode->sample_pattern, GX_TRUE, rmode->vfilter);
 GXSetDispCopyGamma(GX_GM_1_0);
 GXSetDispCopyFrame2Field(GX_COPY_PROGRESSIVE);
 GXClearBoundingBox();

 //
 // CPU direct EFB access
 //
 GXPokeColorUpdate(GX_TRUE);
 GXPokeAlphaUpdate(GX_TRUE);
 GXPokeDither(GX_FALSE);
 GXPokeBlendMode(GX_BM_NONE, GX_BL_ZERO, GX_BL_ONE, GX_LO_SET);
 GXPokeAlphaMode(GX_ALWAYS, 0);
 GXPokeAlphaRead(GX_READ_FF);
 GXPokeDstAlpha(GX_DISABLE, 0);
 GXPokeZMode(GX_TRUE, GX_ALWAYS, GX_TRUE);

 //
 // Performance Counters
 //
 GXSetGPMetric(GX_PERF0_NONE, GX_PERF1_NONE);
 GXClearGPMetric();// Color definitions

#define GX_DEFAULT_BG {64, 64, 64, 255}
#define BLACK {0, 0, 0, 0}
#define WHITE {255, 255, 255, 255}

 //
 // Render Mode
 //
 // (set 'rmode' based upon VIGetTvFormat(); code not shown)

 //
 // Geometry and Vertex
 //
 GXSetTexCoordGen(GX_TEXCOORD0, GX_TG_MTX2x4, GX_TG_TEX0, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD1, GX_TG_MTX2x4, GX_TG_TEX1, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD2, GX_TG_MTX2x4, GX_TG_TEX2, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD3, GX_TG_MTX2x4, GX_TG_TEX3, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD4, GX_TG_MTX2x4, GX_TG_TEX4, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD5, GX_TG_MTX2x4, GX_TG_TEX5, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD6, GX_TG_MTX2x4, GX_TG_TEX6, GX_IDENTITY);
 GXSetTexCoordGen(GX_TEXCOORD7, GX_TG_MTX2x4, GX_TG_TEX7, GX_IDENTITY);
 GXSetNumTexGens(1);
 GXClearVtxDesc();
 GXInvalidateVtxCache();

 GXSetLineWidth(6, GX_TO_ZERO);
 GXSetPointSize(6, GX_TO_ZERO);
 GXEnableTexOffsets(GX_TEXCOORD0, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD1, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD2, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD3, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD4, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD5, GX_DISABLE, GX_DISABLE);
 GXEnableTexOffsets(GX_TEXCOORD6, GX_DISABLE, GX_DISABLE);
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GXInit defaults 197
 GXEnableTexOffsets(GX_TEXCOORD7, GX_DISABLE, GX_DISABLE);

 //
 // Transformation and Matrix
 //
 // (initialize 'identity_mtx' to identity; code not shown)

 // Note: projection matrix is not initialized!
 GXLoadPosMtxImm(identity_mtx, GX_PNMTX0);
 GXLoadNrmMtxImm(identity_mtx, GX_PNMTX0);
 GXSetCurrentMtx(GX_PNMTX0);
 GXLoadTexMtxImm(identity_mtx, GX_IDENTITY, GX_MTX3x4);
 GXLoadTexMtxImm(identity_mtx, GX_PTIDENTITY, GX_MTX3x4);
 GXSetViewport(0.0F, // left
 0.0F, // top
 (float)rmode->fbWidth, // width
 (float)rmode->xfbHeight, // height
 0.0F, // nearz
 1.0F); // farz

 //
 // Clipping and Culling
 //
 GXSetCoPlanar(GX_DISABLE);
 GXSetCullMode(GX_CULL_BACK);
 GXSetClipMode(GX_CLIP_ENABLE);
 GXSetScissor(0, 0, (u32)rmode->fbWidth, (u32)rmode->efbHeight);
 GXSetScissorBoxOffset(0, 0);

 //
 // Lighting - pass vertex color through
 //
 GXSetNumChans(0); // no colors by default

 GXSetChanCtrl(
 GX_COLOR0A0,
 GX_DISABLE,
 GX_SRC_REG,
 GX_SRC_VTX,
 GX_LIGHT_NULL,
 GX_DF_NONE,
 GX_AF_NONE);

 GXSetChanAmbColor(GX_COLOR0A0, BLACK);
 GXSetChanMatColor(GX_COLOR0A0, WHITE);

 GXSetChanCtrl(
 GX_COLOR1A1,
 GX_DISABLE,
 GX_SRC_REG,
 GX_SRC_VTX,
 GX_LIGHT_NULL,
 GX_DF_NONE,
 GX_AF_NONE);

 GXSetChanAmbColor(GX_COLOR1A1, BLACK);
 GXSetChanMatColor(GX_COLOR1A1, WHITE);

 //
 // Texture
 //
 GXInvalidateTexAll();

 // Allocate 8 32k caches for RGBA texture mipmaps.
 // Equal size caches to support 32b RGBA textures.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

198 Graphics Library (GX)
 //
 // (code not shown)

 // Allocate color index caches in low bank of TMEM.
 // Each cache is 32kB.
 // Even and odd regions should be allocated on different address.
 //
 // (code not shown)

 // Allocate TLUTs, 16 256-entry TLUTs and 4 1K-entry TLUTs.
 // 256-entry TLUTs are 8kB, 1k-entry TLUTs are 32kB.
 //
 // (code not shown)

 //
 // Set texture region and tlut region Callbacks
 //
 GXSetTexRegionCallback(__GXDefaultTexRegionCallback);
 GXSetTlutRegionCallback(__GXDefaultTlutRegionCallback);

 //
 // Texture Environment
 //
 GXSetTevOrder(GX_TEVSTAGE0, GX_TEXCOORD0, GX_TEXMAP0, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE1, GX_TEXCOORD1, GX_TEXMAP1, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE2, GX_TEXCOORD2, GX_TEXMAP2, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE3, GX_TEXCOORD3, GX_TEXMAP3, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE4, GX_TEXCOORD4, GX_TEXMAP4, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE5, GX_TEXCOORD5, GX_TEXMAP5, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE6, GX_TEXCOORD6, GX_TEXMAP6, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE7, GX_TEXCOORD7, GX_TEXMAP7, GX_COLOR0A0);
 GXSetTevOrder(GX_TEVSTAGE8, GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE9, GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE10,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE11,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE12,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE13,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE14,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetTevOrder(GX_TEVSTAGE15,GX_TEXCOORD_NULL, GX_TEXMAP_NULL, GX_COLOR_NULL);
 GXSetNumTevStages(1);
 GXSetTevOp(GX_TEVSTAGE0, GX_REPLACE);
 GXSetAlphaCompare(GX_ALWAYS, 0, GX_AOP_AND, GX_ALWAYS, 0);
 GXSetZTexture(GX_ZT_DISABLE, GX_TF_Z8, 0);

 for (i = GX_TEVSTAGE0; i < GX_MAX_TEVSTAGE; i++) {
 GXSetTevKColorSel((GXTevStageID) i, GX_TEV_KCSEL_1_4);
 GXSetTevKAlphaSel((GXTevStageID) i, GX_TEV_KASEL_1);
 GXSetTevSwapMode ((GXTevStageID) i, GX_TEV_SWAP0, GX_TEV_SWAP0);
 }
 GXSetTevSwapModeTable(GX_TEV_SWAP0,
 GX_CH_RED, GX_CH_GREEN, GX_CH_BLUE, GX_CH_ALPHA);
 GXSetTevSwapModeTable(GX_TEV_SWAP1,
 GX_CH_RED, GX_CH_RED, GX_CH_RED, GX_CH_ALPHA);
 GXSetTevSwapModeTable(GX_TEV_SWAP2,
 GX_CH_GREEN, GX_CH_GREEN, GX_CH_GREEN, GX_CH_ALPHA);
 GXSetTevSwapModeTable(GX_TEV_SWAP3,
 GX_CH_BLUE, GX_CH_BLUE, GX_CH_BLUE, GX_CH_ALPHA);

 // Indirect Textures.
 for (i = GX_TEVSTAGE0; i < GX_MAX_TEVSTAGE; i++) {
 GXSetTevDirect((GXTevStageID) i);
 }
 GXSetNumIndStages(0);
 GXSetIndTexCoordScale(GX_INDTEXSTAGE0, GX_ITS_1, GX_ITS_1);
 GXSetIndTexCoordScale(GX_INDTEXSTAGE1, GX_ITS_1, GX_ITS_1);
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

GXInit defaults 199
 GXSetIndTexCoordScale(GX_INDTEXSTAGE2, GX_ITS_1, GX_ITS_1);
 GXSetIndTexCoordScale(GX_INDTEXSTAGE3, GX_ITS_1, GX_ITS_1);

 //
 // Pixel Processing
 //
 GXSetFog(GX_FOG_NONE, 0.0F, 1.0F, 0.1F, 1.0F, BLACK);
 GXSetFogRangeAdj(GX_DISABLE, 0, 0);
 GXSetBlendMode(GX_BM_NONE,
 GX_BL_SRCALPHA, // src factor
 GX_BL_INVSRCALPHA, // dst factor
 GX_LO_CLEAR);
 GXSetColorUpdate(GX_ENABLE);
 GXSetAlphaUpdate(GX_ENABLE);
 GXSetZMode(GX_TRUE, GX_LEQUAL, GX_TRUE);
 GXSetZCompLoc(GX_TRUE); // before texture
 GXSetDither(GX_ENABLE);
 GXSetDstAlpha(GX_DISABLE, 0);
 GXSetPixelFmt(GX_PF_RGB8_Z24, GX_ZC_LINEAR);
 GXSetFieldMask(GX_ENABLE, GX_ENABLE);
 GXSetFieldMode((GXBool)(rmode->field_rendering),
 ((rmode->viHeight == 2*rmode->xfbHeight) ?
 GX_ENABLE : GX_DISABLE));

 //
 // Framebuffer
 //
 GXSetCopyClear(GX_DEFAULT_BG, GX_MAX_Z24);
 GXSetDispCopySrc(0, 0, rmode->fbWidth, rmode->efbHeight);
 GXSetDispCopyDst(rmode->fbWidth, rmode->efbHeight);
 GXSetDispCopyYScale((f32)(rmode->xfbHeight) / (f32)(rmode->efbHeight));
 GXSetCopyClamp((GXFBClamp)(GX_CLAMP_TOP | GX_CLAMP_BOTTOM));
 GXSetCopyFilter(rmode->aa, rmode->sample_pattern, GX_TRUE, rmode->vfilter);
 GXSetDispCopyGamma(GX_GM_1_0);
 GXSetDispCopyFrame2Field(GX_COPY_PROGRESSIVE);
 GXClearBoundingBox();

 //
 // CPU direct EFB access
 //
 GXPokeColorUpdate(GX_TRUE);
 GXPokeAlphaUpdate(GX_TRUE);
 GXPokeDither(GX_FALSE);
 GXPokeBlendMode(GX_BM_NONE, GX_BL_ZERO, GX_BL_ONE, GX_LO_SET);
 GXPokeAlphaMode(GX_ALWAYS, 0);
 GXPokeAlphaRead(GX_READ_FF);
 GXPokeDstAlpha(GX_DISABLE, 0);
 GXPokeZMode(GX_TRUE, GX_ALWAYS, GX_TRUE);

 //
 // Performance Counters
 //
 GXSetGPMetric(GX_PERF0_NONE, GX_PERF1_NONE);
 GXClearGPMetric();
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

200 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

201
Appendix C. Display list format
Display list commands are listed in <dolphin/gx/GXCommandList.h>. The graphics processor (GP)
can interpret the described display list format directly. The bulk of a display list is expected to contain infor-
mation for describing primitives and their vertices. The display list format contains only limited state com-
mands. Most state commands, such as the vertex descriptor or vertex attribute format, should be set by
the appropriate GX API functions prior to calling the display list. We describe the format of certain state-
setting commands below.

Display lists must be 32-byte aligned in DRAM and be a multiple of 32 bytes long. Display lists can be pad-
ded with GX_NOP commands to fill out a 32-byte line.

Display lists are executed by calling the GXCallDisplayList function with a pointer to the display list
and the number of bytes in the display list.

Note: There is no “end of display list” token, since you are providing an explicit length in the call.

C.1 Display list opcodes
A display list consists of a stream of commands (opcodes) followed by their associated data. There can be
any number of commands in any sensible sequence within a display list.

Note: VatIdx[2:0] is the 3-bit Vertex Attribute Format Table index. This format will be used to interpret the
vertex data arrays.

VertexCount[15:0] is a 16-bit count of the number of vertices to follow this command.

Table 21 - Display list opcodes

Opcode Name Opcode
Bits[7:0] Next Field Followed By

GX_DRAW_QUADS 10000VatIdx[2:0] VertexCount[15:0] Vertex data
stream

GX_DRAW_TRIANGLES 10010VatIdx[2:0] VertexCount[15:0] Vertex data
stream

GX_DRAW_TRIANGLE_STRIP 10011VatIdx[2:0] VertexCount[15:0] Vertex data
stream

GX_DRAW_TRIANGLE_FAN 10100VatIdx[2:0] VertexCount[15:0] Vertex data
stream

GX_DRAW_LINES 10101VatIdx[2:0] VertexCount[15:0] Vertex data
stream

GX_DRAW_LINE_STRIP 10110VatIdx[2:0] VertexCount[15:0] Vertex data
stream

GX_DRAW_POINTS 10111VatIdx[2:0] VertexCount[15:0] Vertex data
stream

GX_LOAD_BP_REG 01100001 (0x61) Register[31:0] none

GX_NOP 00000000 None none
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

202 Graphics Library (GX)
C.2 Attribute order requirements
The current Vertex Descriptor (GXSetVtxDesc) is used to indicate the number and type of data or indices.
Recall that indices may be 8 bits or 16 bits. The current attribute array’s (GXSetArray) base pointers and
strides are used for referencing indexed data. These should all be set before executing the display list.

The table below specifies the required order of attribute values (immediate data or indices) in the display
list. The order is identical to that specified for immediate mode primitives drawn using GXBegin/GXEnd.

Table 22 - Vertex index stream order requirements

Order Attribute

0 GX_VA_POSMATIDX

1 GX_VA_TEX0MTXIDX

2 GX_VA_TEX1MTXIDX

3 GX_VA_TEX2MTXIDX

4 GX_VA_TEX3MTXIDX

5 GX_VA_TEX4MTXIDX

6 GX_VA_TEX5MTXIDX

7 GX_VA_TEX6MTXIDX

8 GX_VA_TEX7MTXIDX

9 GX_VA_POS

10 GX_VA_NRM

11 GX_VA_COLOR0

12 GX_VA_COLOR1

13 GX_VA_TEXCOORD0

14 GX_VA_TEXCOORD1

15 GX_VA_TEXCOORD2

16 GX_VA_TEXCOORD3

17 GX_VA_TEXCOORD4

18 GX_VA_TEXCOORD5

19 GX_VA_TEXCOORD6

20 GX_VA_TEXCOORD7
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Example display list (primitives only) 203
C.3 Example display list (primitives only)
The table below provides an example display list as a list of hexadecimal numbers. This display list could
be called using "Code 140 - Code necessary to utilize Example_Display_List" on page 204.

Note: Since the display list only contains indices to attributes, the formats of the attributes could be
changed without affecting the display list. However, the attribute format must be described accu-
rately (i.e., format of the data must match the format described) in order for the display list to be
drawn correctly.

Table 23 - Example_Display_List

Description Data

GX_DRAW_TRIANGLES, GX_VTXFMT0 0x90

number of verts = 6 0x0006

pos_indx (8b) 0x00

norm_indx (8b) 0x10

tex_coord_0 (16b) 0x0011

pos_indx (8b) 0x01

norm_indx (8b) 0x11

tex_coord_0 (16b) 0x0012

pos_indx (8b) 0x02

norm_indx (8b) 0x12

tex_coord_0 (16b) 0x0013

pos_indx (8b) 0x03

norm_indx (8b) 0x13

tex_coord_0 (16b) 0x0014

pos_indx (8b) 0x04

norm_indx (8b) 0x14

tex_coord_0 (16b) 0x0015

pos_indx (8b) 0x05

norm_indx (8b) 0x15
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

204 Graphics Library (GX)
Note: The display list described in "Table 23 - Example_Display_List" on page 203 assumes the follow-
ing code sequence to execute:

Code 140 - Code necessary to utilize Example_Display_List

 GXClearVtxDesc();
 GXSetVtxDesc(GX_VA_POS, GX_INDEX8);
 GXSetVtxDesc(GX_VA_NRM, GX_INDEX8);
 GXSetVtxDesc(GX_VA_TEX0, GX_INDEX16);
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_POS, GX_POS_XYZ, GX_F32, 0);
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_NRM, GX_NRM_XYZ, GX_S8, 6);
 GXSetVtxAttrFmt(GX_VTXFMT0, GX_VA_TEX0, GX_TEX_ST, GX_U16, 5);
 GXSetArray(GX_VA_POS, &mypos, sizeof(f32)*3);
 GXSetArray(GX_VA_NRM, &mynrm, sizeof(s8)*3);
 GXSetArray(GX_VA_TEX0, &mytex, sizeof(u16)*2);
 GXCallDisplayList(&Example_Display_List, 32);

C.4 State commands
Inserting state commands into display lists requires a certain amount of coordination between the state
that is set by immediate-mode API functions and the state that is set by the display list. You should keep in
mind that various types of conflicts could arise.

The first state commands described here are those related to loading texture objects. These “commands”
are all implemented by setting registers within the GP. Before describing these registers, we explain how
the GX API loads texture objects.

Loading a texture object via GXLoadTexObj performs the following steps:
1. GX calls the texture region callback in order to obtain a region of TMEM to use with the texture.

2. GX records the desired texture ID into the texture object, which consists of GP texture registers.

3. The texture registers are written into the FIFO.

4. If this is a color-indexed texture, GX calls the TLUT region callback to obtain the TMEM address for the
TLUT. This is encoded into a register in the texture object and written into the FIFO.

5. GX sets a flag to indicate that the texture coordinate scaling registers need to be updated.

tex_coord_0 (16b) 0x0016

no_op 0x00

no_op 0x00

no_op 0x00

no_op 0x00

no_op, pad to 32B 0x00

Table 23 - Example_Display_List
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

State commands 205
Calling GXLoadTexObjPreLoaded is similar, except that step 1 above is omitted. In either case, step 5 is
necessary because the GP requires that the texture coordinates be scaled according to the texture that
they will look up. Prior to any geometry being drawn, the update flag is examined and, if set, a function is
called to update the scaling registers (and the flag is then cleared). The update function behaves as fol-
lows:
1. If all texture coordinates are being scaled manually, it simply returns.

2. Loop over the indirect stages:
For all non-manual coordinates, it sets the scale register according to the associated map size.

3. Loop over the normal TEV stages:
For all non-manual coordinates, it sets the scale register according to the associated map size.

4. It sets the texture coordinate range bias appropriately as each scale register is adjusted.

Notes:

• If a texture coordinate is associated with both an indirect stage and a normal TEV stage, the coor-
dinate is scaled according to the size of the texture for the normal TEV stage.

• GXSetTevOrder and GXSetIndTexOrder will also set the update flag.

Given the preceding information, we should emphasize that putting texture object-loading commands into
a display list requires that all of the steps be done manually. In particular, you may wish to manage TMEM
according to your own scheme. You should also consider calling GXSetTexCoordScaleManually for all
of the texture coordinates.

The subsequent sections detail the display list commands (registers) for loading textures. In order to send
any of these registers down, you must send down the following sequence for each register:

Unmentioned register bits are reserved and should be set to 0.

0x61 (1 byte) GX_LOAD_BP_REG, the register load com-
mand.

xxxx (4 bytes, big-endian) The actual register as specified below.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

206 Graphics Library (GX)
C.4.1 Set_TextureMode0
Indicates texture lookup and filtering modes.

Code 141 - Set_TextureMode0

 Bits Content Values
 ----- ---------------- ---
 0-1 wrap_s 0: clamp
 1: repeat
 2: mirror
 3: reserved
 2-3 wrap_t same values as wrap_s
 4 mag_filter 0: near
 1: linear
 5-7 min_filter 0: near 4: linear
 1: near_mip_near 5: lin_mip_near
 2: near_mip_lin 6: lin_mip_lin
 3: reserved 7: reserved
 8 diag_lod_enable 0: use edge LOD 1: use diagonal LOD
 9-16 lod_bias S2.5 (-4.0:3.99) (2’s complement format)
 19-20 max_aniso 0: 1
 1: 2 (requires edge LOD)
 2: 4 (requires edge LOD)
 21 lod_clamp 0: off
 (bias_clamp) 1: on
 24-31 opcode 0x80 + GXTexMapID (id <= 3)
 0xa0 + GXTexMapID (id >= 4)

C.4.2 Set_TextureMode1
Indicates min/max LOD info.

Code 142 - Set_TextureMode1

 Bits Content Values
 ----- ---------------- ---
 0-7 min_lod U4.4 (0:10.0)
 8-15 max_lod U4.4 (0:10.0)
 24-31 opcode 0x84 + GXTexMapID (id <= 3)
 0xa4 + GXTexMapID (id >= 4)

C.4.3 Set_TextureImage0
Indicates texture width, height, and format.

Code 143 - Set_TextureImage0

 Bits Content Values
 ----- ---------------- ---
 0-9 image_width U10 (0:1023) value is (real width) - 1
 10-19 image_height U10 (0:1023) value is (real height) - 1
 20-23 image_format 0: I4 4: RGB565 8: C4 12: reserved
 1: I8 5: RGB5A3 9: C8 13: reserved
 2: IA4 6: RGBA8 10: C14X2 14: CMP
 3: IA8 7: reserved 11: reserved 15: reserved
 24-31 opcode 0x88 + GXTexMapID (id <= 3)
 0xa8 + GXTexMapID (id >= 4)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

State commands 207
C.4.4 Set_TextureImage1
Indicates where even LODs are stored (or cached) in TMEM. This data normally comes from a
GXTexRegion object.

Code 144 - Set_TextureImage1

 Bits Content Values
 ----- ---------------- ---
 0-14 tmem_offset (address of even LODs in TMEM) >> 5
 15-17 cache_width 3: 32KB
 4: 128KB
 5: 512KB
 17-19 cache_height must be equal to cache_width
 20 image_type 0: cached
 1: preloaded
 24-31 opcode 0x8c + GXTexMapID (id <= 3)
 0xac + GXTexMapID (id >= 4)

C.4.5 Set_TextureImage2
Indicates where odd LODs are stored in TMEM (unused by most planar textures). This data normally
comes from a GXTexRegion object.

Code 145 - Set_TextureImage2

 Bits Content Values
 ----- ---------------- ---
 0-14 tmem_offset (address of odd LODs in TMEM) >> 5
 15-17 cache_width 3: 32KB
 4: 128KB
 5: 512KB
 0: none (only where odd is not used)
 17-19 cache_height must be equal to cache_width
 24-31 opcode 0x90 + GXTexMapID (id <= 3)
 0xb0 + GXTexMapID (id >= 4)

C.4.6 Set_TextureImage3
For cached textures, where the texture is found in main memory.

Code 146 - Set_TextureImage3

 Bits Content Values
 ----- ---------------- ---
 0-20 image_base (PHYSICAL address of texture in main memory) >> 5
 24-31 opcode 0x94 + GXTexMapID (id <= 3)
 0xb4 + GXTexMapID (id >= 4)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

208 Graphics Library (GX)
C.4.7 Set_TextureTLUT
For color-index textures, where the TLUT is found in the high TMEM bank.

Code 147 - Set_TextureTLUT

 Bits Content Values
 ----- ---------------- ---
 0-9 tmem_offset (offset of TLUT from start of high bank in TMEM) >> 5
 10-11 tlut_format 0: IA8 1: RGB565 2: RGB5A3
 24-31 opcode 0x98 + GXTexMapID (id <= 3)
 0xb8 + GXTexMapID (id >= 4)

C.4.8 SU_TS0
Indicates the texture coordinate scaling (s component). The point/line offset is normally set by
GXEnableTexOffsets.

Code 148 - SU_TS0

 Bits Content Values
 ----- ---------------- ---
 0-15 ssize U16 (s scale value - 1) for the specified texcoord
 16 bs Enables range bias for s (used with GX_REPEAT only)
 17 ws Enables cylindrical texcoord wrapping for s
 18 lf Enables texcoord offset for lines using this texcoord
 19 pf Enables texcoord offset for points using this texcoord
 24-31 opcode 0x30 + GXTexCoordID * 2

C.4.9 SU_TS1
Indicates the texture coordinate scaling (t component).

Code 149 - SU_TS1

 Bits Content Values
 ----- ---------------- ---
 0-15 tsize U16 (t scale value - 1) for the specified texcoord
 16 bt Enables range bias for t (used with GX_REPEAT only)
 17 wt Enables cylindrical texcoord wrapping for t
 24-31 opcode 0x31 + GXTexCoordID * 2
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

209
Appendix D. Nintendo GameCube texture formats
This appendix describes the Nintendo GameCube texture formats. The first section describes the bit order-
ing within a texel. The next section describes how texels are arranged in tiles. The texture cache hardware
fetches texels in tile units. The final section describes how tiles are organized into images.

D.1 Texel formats
The texturing hardware supports 14 native texture image formats specified by register
image_format[3:0]. Supported types are Intensity, Intensity Alpha, RGB, RGBA, Color Index, Com-
pressed, and Z. Supported texel sizes are 4-bit, 8-bit, 16-bit, and 32-bit. The following figures illustrate the
packing of texel components.

Figure 74 - Texel formats

I4

I8

47
I0[3:0]

0
I[7:0]

7

03
I1[3:0]

N0 N1
N0 : nibble 0
N1 : nibble 1

8-bit Z
0

Z[7:0]
7

(Note: use I8 for 8-bit Z)

IA4
07

A[3:0] I[3:0]

IA8
15 Byte 1Byte 0 0

A[7:0] I[7:0]
8 7

16-bit Z
15 Byte 1Byte 0 0

Z[15:8] Z[7:0]
8 7

(Note: use IA8 for 16-bit Z)

R5G6B5
15 8 Byte 1Byte 0 07

R[4:0] G[5:0] B[4:0]

(Note: use RGBA8 for 24-bit Z)

RGB5A3

RGBA8
15

15

8 Byte 1Byte 0 07
A[7:0] R[7:0]

8 Byte 1Byte 0 07
G[7:0] B[7:0]

(AR)

(GB)

8 Byte 1Byte 0 0715
A[2:0] R[3:0] G[3:0] B[3:0]0 (RGB4A3)

8 Byte 1Byte 0 0715
1 R[4:0] G[4:0] B[4:0] (RGB5)

or

24-bit Z
15

15

8 Byte 1Byte 0 07
X Z[23:16]

8 Byte 1Byte 0 07
Z[15:8] Z[7:0]

(AR)

(GB)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

210 Graphics Library (GX)
The compressed texture format allows for a 1-bit alpha. If a multi-bit alpha is desired, this can be accom-
plished through the use of multi-texture.

D.2 Texture tile formats
Texture images are organized as 32-byte tiles. Each 32-byte tile represents a 2D region of texels. For 4-bit
texels, each 32-byte tile represents 8x8 texels. For 8-bit texels, each 32-byte tile represents 4x8 texels. For
16-bit texels, each 32-byte tile represents 4x4 tiles. For 32-bit texels, a pair of 32-byte tiles represents 4x4
texels. This is illustrated in the following figures.

Figure 75 - Texture tile formats

CI8

CI4

47
CI0[3:0]

07
CI[7:0]

0
CI1[3:0]

3N0 N1

CI14
08 Byte 1Byte 0 715

CI[13:0]

CMP
RGB0[15:0]

RGB1[15:0]

T[0][0] T[0][1] T[0][2] T[0][3]

T[1][0] T[1][1] T[1][2] T[1][3]

T[2][0] T[2][1] T[2][2] T[2][3]

T[3][0] T[3][1] T[3][2] T[3][3]

3263 Byte 156Byte 0 4855 40 Byte 3Byte 2 3947
R1[4:0] G1[5:0] B1[4:0]R0[4:0] G0[5:0] B0[4:0]

031 Byte 524Byte 4 1623 8 Byte 7Byte 6 715
T12T11T10T03T02T01T00 T33T32T31T30T23T22T21T20T13

T

0

S

7
4bit Format : 8x8 texels / cache line

3F

Texel

1F 20 3F
Byte0 Byte31

0

RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Texture image formats 211
D.3 Texture image formats
In main memory, the starting address of an image is aligned to 32 bytes. The tiles that make up the image
are stored in row-column order. Both cached and pre-loaded images have the same organization in main
memory.

32bit Format : 4x4 texels / 2 cache lines

AR AR0 7 8 F
0 1 2 3

4 5 6 7

8 9 A B

C D E F

S

T

GB

0 1 2 3

4 5 6 7

8 9 A B

C D E F

S

T

AR

GB GB0 7 8 F

Byte0 Byte31

Byte32 Byte63

0

2 3

1
32

S

Compressed Format : 8x8 texels / cache line

10

T

4x4 texels/block

Byte0 Byte31

0 1 2 3

4 5 6 7

8 9 A B

C D E F

S

T
16bit Format : 4x4 texels / cache line

0 7 8 F
Byte0 Byte31

T

0

S

7

1F

8bit Format : 4x8 texels / cache line

F 10 1F0
Byte0 Byte31
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

212 Graphics Library (GX)
Each row and column of an image is padded to a 32-byte tile. For 32-bit texels, each row is actually pad-
ded to a pair of 32-byte tiles. Each image is stored contiguously in main memory. For a mipmap pyramid,
the levels are stored contiguously. The ordering of the images is from finest to coarsest. Each level of the
mipmap pyramid is aligned to a 32-byte tile. This is illustrated in the following figures.

Figure 76 - Texture image formats

0 1 2 3

6 7 8 9

C D E F

12 13 14 15

4 5

A B

10 11

16 17

T

S

32B tile

In main memory, images are alligned to 32B.
32B tiles are stored in row-column order.
Each row and column is padded to 32B.
For 32-bit format, each row is padded to a tile pair.

Mipmap images are stored contiguously.
Each level is alligned to 32B.

Level 0

Level 1

Level 2
Level 3

32B Alligned

32B Alligned

32B Alligned
32B Alligned
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

213
Appendix E. Memory issues
The Graphics Processor has several data memory requirements, including alignment requirements for the
following types of data:

• Texture and TLUT images.

• Display lists.

• Graphics FIFO.

• External frame buffer (XFB).

E.1 Rules of alignment
These data objects must be aligned because the GP is very fast; data from the main memory is transferred
in 32-byte chunks. Data alignment allows for simple and fast hardware.

On other data objects, such as vertex, matrix and light arrays, additional hardware support eliminates the
need for coarse alignment (these are 4-byte aligned). There are a large number of these data objects, and
the memory consumption of each object is potentially low, so relaxing alignment restrictions helps to con-
serve memory.

The following table outlines the alignment rules for these objects.

Table 24 - Memory alignment rules

Data Object Alignment Rule Function

Texture Map • Base address = 32B

• Width and height
rounded up to tile
boundary. Each tile is
32B.

• Base address of each
map in mipmap is
aligned to 32B

• GXInitTexObj(obj, image_ptr, …)
• GXInitTexObjCI(obj, image_ptr, …)
• GXCopyTex(dest, ..)

Texture Lookup
Table (TLUT)

• Base address = 32B

• Length = 32B

• GXInitTlutObj(, lut,)

Display List • Base address = 32B

• Length = 32B

• GXBeginDisplayList(list, size)
• GXCallDisplayList(list, nbytes)

Graphics FIFO • Base address = 32B

• Length = 32B

• GXWriteFifoBase(base, size)
• GXWriteFifoLimits(hi_water_mark,

lo_water_mark)

• GXWriteFifoPtrs(read_ptr,
write_ptr)

• GXReadFifoStatus(,,, fifo_cnt)
External Frame
Buffer (XFB)

• Base address = 32B

• Width = 32B

• Length = 32B

• GXCopyDisp(dest, …)
• VISetNextBuffer(framebuffer, …)
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

214 Graphics Library (GX)
E.2 Alignment assistance functions
The Nintendo GameCube libraries contain functions that assist with alignment issues. Several examples
appear in the table below.

E.3 Data coherency
Nintendo GameCube has multiple processors and hardware blocks that can update main memory. In addi-
tion, the CPU and GP contain various data caches. Since the hardware does not maintain coherency of the
data in main memory and various associated caches, there are three potential sources of coherency prob-
lems:

• When the CPU modifies or generates data destined for the GP.

• When the CPU writes data through its write-gather buffer to cached memory.

• When loading new data destined for the GP from the Nintendo GameCube Disc into main memory.

Coherency problems may occur if the main memory used to store the data in these two latter cases were
used for other graphics data.

Table 25 - Alignment assistance functions

Function Purpose

ATTRIBUTE_ALIGN(32) CodeWarrior compiler static variable alignment directive.

OSRoundUp32B(x) Macro to round up a pointer to 32B.

OSRoundDown32B(x) Macro to round down a pointer to 32B.

OSAlloc(size) Memory heap allocation function. Always returns 32B base
address and length of memory buffer.

GXGetTexBufferSz(x, y,
texel_type, mipmap)

Function to compute correct amount of memory required to store
a texture, based on the texture width, height, and texel type, and
whether or not this texture is mipmapped.

VIAlignFramebufferWidth
(width)

Function to compute correct amount of memory required for the
frame buffer, based on the pixel width of the frame buffer.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Data coherency 215
Figure 77 - Data coherency

The arrows in the preceding figure represent the following typical operations:
1. Loading texture images from the Nintendo GameCube Disc to main memory for a new game sector or

level.

2. Loading geometry vertex display list from the Nintendo GameCube Disc to main memory for a new
game sector or level.

3. Dynamic rendering of texture maps by the CPU.

4. Dynamic generation or modification of vertices by the CPU.

5. CPU animating lights and matrices.

6. CPU generating display lists.

7. CPU generating the graphics command stream.

8. GP reading graphics command stream.

9. GP reading display lists.

10. GP accessing vertices for rendering.

11. GP accessing textures for rendering.

In addition, other combinations are possible, such as loading display lists from the Nintendo GameCube
Disc, or writing command streams or display lists through the CPU cache.

main memory

CPU

L1/L2
Data

Cache

Graphics Processor

Vertex
Cache

Texture
Cache

vertex array(s) texture
maps

matrices

lights

1

2
3

4

567

Write
Gather
Buffer

Input
FIFOs

C
om

m
and FIFO

(s)

D
isplay Lists

9

8

10 11

Optical
Disc Drive
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

216 Graphics Library (GX)
E.3.1 About the DVD library loading graphics data
When the DVD library loads data, the DVD API automatically invalidates the loaded main memory portion
that resides in the CPU data cache. This feature provides a safe method for programmers to modify the
Nintendo GameCube Disc loaded data without worrying about CPU data cache coherency. This DVD API
feature activates by default; it can be deactivated by the programmer.

The graphical data loaded by the DVD library may contain textures and vertices that have been already
formatted for the GP to render. Therefore, invalidation of the vertex cache and texture cache regions may
be necessary.

Code 150 - DVDSetAutoInvalidation

BOOL DVDSetAutoInvalidation(BOOL autoInval);
void GXInvalidateVtxCache(void);
void GXInvalidateTexRegion(GXTexRegion *region);
void GXInvalidateTexAll(void);

E.3.2 CPU generating or modifying graphics data
The CPU has two means of writing to main memory: the write-gather buffer and the CPU cache hierarchy.
The write-gather buffer is normally used to “blast” graphics commands into memory without affecting the
cache. As a result, information sent through the write-gather buffer is not cache coherent. Care must be
taken when using the write-gather buffer to avoid writing to areas of memory that may be found in the CPU
cache. The cache flushing instructions shown below may be used to force data areas out of the CPU
cache.

If the CPU generates or modifies graphics data through its cache, the following memory types may end up
containing stale data:

• Main memory.

• GP vertex cache and texture cache regions.

To send the correct data to the GP, we need to flush the CPU data cache as well as invalidate the GP ver-
tex or texture cache. The CPU typically animates data one frame ahead of the GP, so efficient techniques
to maintain data coherency include:

• Grouping all the CPU-modified graphics data in main memory sequentially, so that the block data
cache flush is efficient.

• Invalidating the vertex cache, as well as the entire texture cache, at the beginning of each graphics
frame.

Code 151 - Commands to flush the CPU data cache

void DCFlushRange(void* startAddr, u32 nBytes); // write out & invalidate
void DCStoreRange(void* startAddr, u32 nBytes); // write out only
void DCInvalidateRange(void* startAddr, u32 nBytes); // invalidate only

E.3.2.1 Immediate mode
If you use GX immediate mode APIs to update matrix or light data, you don’t need to worry about coher-
ency issues. These APIs copy the arguments into the graphics FIFO, and include matrix and lighting func-
tions with the form GXLoad*Imm.
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

Data coherency 217
E.3.2.2 Direct data
If some vertex attributes in the vertex array descriptor are of the type GX_DIRECT, this data is copied
directly into the graphics FIFO, so users must be aware of coherency considerations.

E.3.2.3 Indexed data
If you use the GX indexed mode APIs to update matrix or light data, the software must flush the data cache
in order to move the correct data into main memory. These APIs include matrix and lighting functions with
the form GXLoad*Indx.

Furthermore, the hardware implements indexed matrices and lights by passing this data through the vertex
cache; therefore, you must invalidate the vertex cache also. (The only reason for this is to simplify the
hardware design.)

E.3.2.4 CPU scratchpad
If the CPU L1 data cache is partitioned in scratchpad mode, you will need to DMA the modified data to
main memory instead of flushing it from the normal data cache.
© 2006 Nintendo RVL-06-0037-001-A
CONFIDENTIAL Released: February 27, 2006

218 Graphics Library (GX)
RVL-06-0037-001-A © 2006 Nintendo
Released: February 27, 2006 CONFIDENTIAL

	1 Introduction
	1.1 Document organization
	1.2 Syntax notes
	1.3 A note on pointers
	1.4 Useful books

	2 Code example: onetri.c
	3 Initialization
	3.1 Video initialization
	3.2 Graphics initialization
	3.3 Graphics Processor (GP)

	4 Vertex and primitive data
	4.1 Describing the vertex data
	4.2 Describing arrays
	4.3 Describing attribute data formats
	4.4 Drawing graphics primitives
	4.4.1 Primitive types
	4.4.2 Points and lines
	4.4.3 Rasterization rules
	4.4.4 Using vertex functions

	4.5 Vertex data organization
	4.5.1 Indexed vertex data
	4.5.2 Direct vertex data
	4.5.3 Mixture of direct and indexed data

	4.6 Display lists
	4.6.1 Creating display lists
	4.6.1.1 Using GXBeginDisplayList and GXEndDisplayList
	4.6.1.2 Loading GPL files
	4.6.1.3 Creating arrays containing display list commands

	4.6.2 Drawing primitives using display lists
	4.6.3 Effect on machine state

	4.7 GXDraw functions

	5 Viewing
	5.1 Loading a modelview matrix
	5.2 Setting a projection matrix
	5.3 Culling, clipping, and scissoring
	5.4 Viewport and scissoring
	5.5 Coordinate systems
	5.6 How to override the default matrix memory configuration

	6 Vertex lighting
	6.1 Lighting pipeline
	6.1.1 Diffuse lights, diffuse attenuation and vertex normals
	6.1.2 Local lights and range attenuation
	6.1.3 Spotlights, directional lights and angle attenuation

	6.2 Diffuse lighting equations
	6.3 Matrix memory
	6.4 Light parameters
	6.4.1 Angle attenuation
	6.4.2 Distance attenuation

	6.5 Channel parameters
	6.5.1 Channel colors
	6.5.2 Channel control
	6.5.3 Pre-lighting

	6.6 Specular lighting
	6.7 Vertex performance
	6.8 Lighting performance

	7 Texture coordinate generation
	7.1 Specifying texgens
	7.2 Other texture coordinate generation issues
	7.3 Texture coordinate generation performance

	8 Texture mapping
	8.1 Example: Drawing a textured triangle
	8.2 Loading a texture into main memory
	8.3 Code describing a texture object
	8.3.1 Texel formats
	8.3.2 Texture Lookup Table (TLUT) formats
	8.3.3 Texture image formats
	8.3.4 Texture coordinate space
	8.3.5 Filter modes and LOD controls

	8.4 Loading texture objects
	8.5 Loading Texture Lookup Tables (TLUTs)
	8.6 How to override the default texture configuration
	8.6.1 Texture regions
	8.6.2 Cached regions
	8.6.3 TLUT regions
	8.6.4 Preloaded regions
	8.6.5 Texture cache allocation
	8.6.6 TLUT allocation

	8.7 Invalidating texture cache
	8.8 Changing the usage of TMEM regions
	8.9 Creating textures by copying the embedded frame buffer
	8.10 Z textures
	8.11 Texture performance

	9 Texture environment (TEV)
	9.1 Description
	9.2 Default texture pipeline configuration
	9.3 Number of active TEV stages
	9.4 GXSetTevOp
	9.5 Color/alpha combine operations
	9.5.1 Clamp modes

	9.6 Color inputs
	9.7 Alpha inputs
	9.8 Example equations
	9.9 Alpha compare function
	9.10 Z textures
	9.11 Texture pipeline configuration

	10 Indirect texture mapping
	10.1 Setting up indirect texture stages
	10.2 Basic indirect texture processing
	10.3 Basic indirect texture functions
	10.3.1 Texture warping
	10.3.2 Environment-mapped bump-mapping (dX, dY, dZ)

	10.4 Advanced indirect texture processing
	10.4.1 Selecting “bump alpha”
	10.4.2 Dynamic matrices
	10.4.3 Selecting texture coordinates for texture LOD
	10.4.4 Adding texture coordinates from previous TEV stages

	10.5 Advanced indirect functions
	10.5.1 Texture tiling and pseudo-3D texturing
	10.5.2 Environment-mapped bump-mapping (dS, dT)
	10.5.3 General indirect texturing

	11 Fog, Z-compare, blending, and dithering
	11.1 Fog
	11.1.1 Fog curves
	11.1.2 Fog parameters

	11.2 Z-compare
	11.2.1 Z buffer format

	11.3 Blending
	11.3.1 Blend equation
	11.3.2 Blending parameters
	11.3.3 Logic operations

	11.4 Dithering

	12 Video output
	12.1 The copy pipeline
	12.1.1 Copy source
	12.1.2 Antialiasing and deflickering
	12.1.3 Gamma correction
	12.1.4 RGB to YUV
	12.1.5 Y scale
	12.1.6 Copy destination
	12.1.7 Clear color and Z for next frame

	12.2 Predefined render modes
	12.2.1 Double-strike, non-antialiased mode
	12.2.2 Double-strike, antialiased mode
	12.2.3 Interlaced, non-antialiased, field-rendering mode
	12.2.4 Interlaced, antialiased, field-rendering mode
	12.2.5 Interlaced, non-antialiased, frame-rendering, deflicker mode
	12.2.6 Interlaced, non-antialiased, frame-rendering, non-deflicker mode
	12.2.7 Interlaced, antialiased, frame-rendering, deflicker mode

	12.3 GX API default render mode
	12.4 Embedded frame buffer formats
	12.4.1 48-bit format - non-antialiasing
	12.4.2 96-bit super-sampling format - antialiasing

	12.5 External frame buffer format
	12.6 CPU direct EFB access

	13 Graphics FIFO
	13.1 Description
	13.2 Creating a FIFO
	13.3 Attaching and saving FIFOs
	13.4 FIFO status
	13.5 FIFO flow control
	13.6 Draw synchronization functions
	13.6.1 GXDrawDone
	13.6.2 GXDrawSync
	13.6.3 FIFO breakpoint
	13.6.4 Abort frame
	13.6.5 VI synchronization

	13.7 Draw synchronization methods
	13.7.1 Double-buffering
	13.7.2 Triple-buffering

	13.8 Graphics FIFO vs. display list
	13.9 Notes about the write-gather pipe
	13.10 GX verify

	14 Performance metrics
	14.1 Types of metrics
	14.2 GP front-end and texture-related metrics
	14.2.1 GP Counter 0 details
	14.2.2 Counter 1 details

	14.3 Using performance counters
	14.4 Vertex cache metrics
	14.5 Pixel metrics
	14.6 Memory metrics

	15 GX updates for HW2
	15.1 Compatibility
	15.2 Bugs
	15.3 New HW2 features
	15.3.1 NBT indices can be separated
	15.3.2 Fractional shift works with 8-bit vertex attributes
	15.3.3 Renormalization and “post-transform” matrices added for texgens
	15.3.4 Line (but not point) aspect ratio fixed for field-mode rendering
	15.3.5 New TEV compare functions added
	15.3.6 More flexibility in TEV for texture and raster color component swaps
	15.3.7 New TEV “constant” color registers, component selectable
	15.3.8 Subtractive “blend” mode
	15.3.9 New texture copy types (for both color and Z)
	15.3.10 Scissor box offset

	16 Limitations
	16.1 Antialiasing
	16.2 CPU access to the frame buffer
	16.3 Display lists
	16.4 Vertex performance
	16.5 Matrix memory
	16.6 Texture
	16.7 Blending and logic operations
	16.8 Sharing main memory resources

	17 Comparison to the Nintendo 64
	17.1 Display lists vs. immediate mode
	17.2 No microcoded processor
	17.3 Vertex buffer
	17.4 Textures
	17.5 Winding order
	17.6 Video scaling
	17.7 Antialiasing
	17.8 Coplanar polygons
	17.9 FREE Z buffering, FREE blending

	18 Comparison to OpenGL
	18.1 Vertex description
	18.2 Matrices
	18.3 Lighting
	18.4 Texture coordinate generation
	18.5 Texture and multi-texture
	18.6 Polygon offset

	Appendix A. GX API functions
	Appendix B. GXInit defaults
	Appendix C. Display list format
	Appendix D. Nintendo GameCube texture formats
	Appendix E. Memory issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

