
OpenGX

David Guillen Fandos
(david@davidgf.net)

June 18th, 2012

1 Introduction

On summer 2009 I started working on a PSP game project as a result of
the console being hacked on the previous months. The idea of Toy Wars
was conceived and the working started. My idea was to build a multiplat-
form game because that gave some advantages over console specific games.
I chose OpenGL and SDL as the main libraries because they were available
on the platform thanks to the scene contributions. This way I could create
a computer game which was compatible with PSP.

After some time it became a decent game (for a homebrew) and I got tired
of the PSP scene. I wanted to expand my horizons on console development
and searched for a new target to focus on. I had been working on other
consoles previously (in 2007-2008), Dreamcast and GB/GBA. Those projects
didn’t lead to any results (apart from two demos) but gave me some great
experiences because their corresponding scenes were long dead, thus requiring
extra effort to get into them.

So I found my brother’s old Game Cube lying in the wardrobe’s bottom.
Immediately I had the need to start working on the scene although it was an
old console and probably the scene would be dead. But surprisingly for me I
found that the scene was quite alive. The secret was (I found out later) that
the GC’s successor, the Wii, was a cheap copy with some simple additions,
so the Wii scene was a natural successor of GC’s.

I started the port, which I thought it would be pretty straightforward, but
after some time I realized that it would need more time to successfully port

1

Toy Wars. The main problem was the lack of ”standard” libraries such as
SDL and OpenGL. The GC and Wii scene was and old one and nobody cared
about using multiplatform libraries which I guess it’s common on console
development. The SDL port for Wii existed and was quite good, but no port
existed for the GC. Hopefully I found that there was a guy working on a GC
port. I mailed him and he was kindly enough to send me his sources which,
I have to say, worked like a charm.

OpenGX was the remaining piece of the puzzle. I needed an OpenGL
renderer and the only project which existed by the time was a complete non-
working mess. So instead of changing the render code I wrote an OpenGL
wrapper so it could be used with other projects. That is the way OpenGX
was born.

2 Aim and scope

In this document I want to explain how GX works and how OpenGX uses
it to emulate an OpenGL pipeline. GX is messy and a little difficult to
understand, so I expect that this contribution helps to lighten some of the
darkest areas.

It isn’t the aim of the document to be exhaustive about the GX pipeline
so, for a fully understanding of it, refer to the official GX documentation [1]
and the free libOGC GX implementation documentation [2]

Also the document won’t cover all the OpenGX functionality but it’s core
and most interesting aspects (the ones which I’ve found more instructive to
talk about). For the complete reference it’s a good idea to look at the source
code.

3 Introduction to GX’s pipeline

The GX pipeline can be divided in two big parts: the geometry processing
and the pixel processing. The first one takes care of the operations in the
”vertex domain”, which involves transformation of the vertices, projection
and clipping. The pixel processing is responsible for pixel rasterization, which
includes color, texture and lighting calculations. To be exact lighting is partly
calculated by the geometry unit.

Figure 1 shows a sketch of the pipeline stages.

2

Figure 1: Sketch of the GX pipeline. Left stages care about geometry pro-
cessing while the right ones carry pixel calculations

3.1 Vertex calculations

The vertex calculation follows a classic scheme. We have vertices, normals
and texture coordinates which can be transformed using some matrices.

The model-view matrix transforms the vertices in model-world space to
view space. The projection matrix then transforms the vertices in view space
to projection space (2D space, the screen). We also have a normal matrix, for
transforming the normals and a texture transform matrix for transforming
texture coordinates within its space.

The main differences in the process is how the matrices are represented.
First of all OpenGL uses column-major matrices while GX uses row-major
matrices. This is OpenGL stores columns contiguously in the memory while
GX stores rows contiguously in the memory. Also the matrices have differ-
ent size. The projection matrix is 4x4 but the modelview matrix is a 3x4
matrix (as the last row is never used for three component vector transforma-
tions). The normal matrix is a 3x4 matrix which only uses the 3x3 submatrix
(ignoring the last column) because normals can only be rotated, not trans-
lated. The texture transformation matrix can be either a 2x4 matrix or a
3x4 matrix, depending on the usage.

The hardware is capable of storing up to ten model-view and normal
matrices, one projection matrix and ten texture matrices. The matrices
must be loaded and flushed to the GPU pipeline before they can be used,
so it’s a good idea to have some slots to load matrices which never change
or are used frequently. The hardware allows to switch between matrix slots
very easily (and fast).

3

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

(a) Projection matrix

11 12 13 14
21 22 23 24
31 32 33 34

(b) Model-view matrix

11 12 13 14
21 22 23 24
31 32 33 34

(c) Normal matrix(

11 12 13 14
21 22 23 24

) (
11 12 13 14
21 22 23 24

)
(d) Texture coordinates matrices

Figure 2: Matrices involved in vertex transformations. Greyed out columns
represent elements of the matrix which are not used by the calculations but
must be present in memory

3.2 Pixel calculations

After the vertex transform, projection and clipping it all comes to pixel work.
The hardware calculates the resulting color of every pixel for each piece of
geometry sent to the GPU. The pixel is tested against the depth component
to determine its visibility and then may be rendered on the screen.

The process of determining the pixel color is very complex because the
GX allows the programmer to control the fixed pipeline in a similar way pixel
or fragment shaders do. The final pixel color is calculated using a custom
combination of the rasterized color (from vertex and lighting), the texture
color and constant colors of our own choose. This combination occurs right
before fogging and blending.

The operation is calculated in a Texture Environment unit (TEV), which
is a combinational circuit which has colors as entries and a color output.
The unit calculates the output color using up to four input colors as can be
seen in Figure 3. The programmer can choose which operation (OP) wants
to perform, which scale factor wants to apply to the color and an optional
additive bias. The functions GX SetTevColorOp and GX SetTevAlphaOp
are used to setup all the named parameters.

The TEV unit can be reused multiple times for the same screen pixel,
so the operation that can be computed can be very complex. To achieve
this unit re-usage the output is connected to four registers and the input
is connected to those for registers as well as other inputs. This allows the
programmer to use the output of previous calculations as the input of another

4

Figure 3: Diagram of the Texture environment unit, which calculates a color
using up to four input colors

calculation. The function GX SetNumTevStages sets the number of stages.
The unit can be used up to sixteen times for the same pixel. The less

cycles needed for a pixel calculation the fastest the rendering will be. An
example is shown in Figure 4

So, what inputs can be used in a TEV stage (not counting the four
auxiliary registers)? We can use the color from a texture (in fact multi-
ple textures), the color from the rasterizer (which is calculated using lighting
equations) and some constant registers.

The four registers are named reg0, reg1, reg2 and prev. When concate-
nating TEV stages it’s common to use the prev register. Also the prev
register is used to store the final pixel color and alpha, so the last TEV stage
should have prev register as its output. The functions GX SetTevColorIn
and GX SetTevAlphaIn set the inputs for each stage.

The TEX input represents the rasterized texture color. The rasterization
is done using the texture coordinates and the color is calculated in the texture
unit (which applies decompression and/or filtering if required) and passed to
the stage as an input. There’s only one texture input so in theory only
one texture can be rasterized. But the hardware allows to rasterize multiple
textures at each TEV stage. So if we want to combine two textures in the
TEV we must use two stages. The first stage would retrieve the first texture
color and the second stage would retrieve the other and combine them.

The RAS input is the color outputted from the rasterizer. This color is
calculated using lighting equations, so it takes in account the materials, lights
and vertex colors. We’ll discuss extensively as it’s one of the most important
inputs.

The KONST input provides a constant color which can be specified by

5

(a) Example of a color operation using three TEVs

(b) Implementation of the operation using one TEV
thrice (using auxiliary registers and thus taking three
cycles)

Figure 4: Example of a color operation which is calculated using a TEV unit
and using the four auxiliary registers for intermediate data. We are using
three TEV stages

the programmer for each stage. There are hardwired colors but also four
registers for the programmer to write. Those registers can be written using
GX SetTevKColor. For each stage the constant color to use can be selected
with the function GX SetTevKColorSel.

In addition to the constant colors provided by the input KONT, the inputs
ZERO, ONE and HALF can be selected as inputs for a TEV stage. This
inputs, as their names suggest, are hardwired values to zero, one and 0.5f.
They’re useful (specially zero) for performing simple operations which only
require two or three operands.

3.2.1 Texture rasterization

Each TEV stage can only lookup one texture pixel, as can be seen in Figure 5.
So we can control which texture is going to be rasterized in each TEV stage.
The function GX SetTevOrder allows to specify which texture is going to be
rasterized and presented at the TEX input. Also we must specify the texture
coordinates that will be used for the rasterization (as vertices can have up
to eight texture coordinates).

As an example we are going to consider the rasterization of a lightmapped

6

(a) Inputs available for the four TEV inputs (b) Possible output
registers for a TEV

Figure 5: Diagram showing the possible inputs and outputs for a TEV stage.
It’s possible to choose between color or alpha channel in some inputs

scene. In a lightmapped scene we have two textures (the colored one and the
lightmap) and two pairs of texture coordinates. The operation we are going to
perform is to modulate the colors, that is, multiplying the colors components
so that the original color gets darkened or lightened depending on the gray
amount. A DirectX 6 example can be found at [3] with the explanation.

First of all we have to setup two TEV stages and indicate that two sets
of texture coordinates are being used.

GX_SetNumTevStages (2) ;
GX_SetNumTexGens (2) ;

Now we’re going to setup the first TEV stage, which will select the TEX
as input D and zero for the other inputs. The operation doesn’t matter at
all.

GX_SetTevColorIn (GX_TEVSTAGE0 , GX_CC_ZERO , GX_CC_ZERO , GX_CC_ZERO ,
GX_CC_TEXC) ;

7

GX_SetTevAlphaIn (GX_TEVSTAGE0 , GX_CA_ZERO , GX_CA_ZERO , GX_CA_ZERO ,
GX_CA_TEXA) ;

GX_SetTevColorOp (GX_TEVSTAGE0 , GX_TEV_ADD , GX_TB_ZERO , GX_CS_SCALE_1 ,
GX_TRUE , GX_TEVPREV) ;

GX_SetTevAlphaOp (GX_TEVSTAGE0 , GX_TEV_ADD , GX_TB_ZERO , GX_CS_SCALE_1 ,
GX_TRUE , GX_TEVPREV) ;

We are storing the result in the prev register. For the next stage we will
use inputs B and C and ignore the other (zeroed). B will be the previous
value (texture 1 color) and C will be texture 2 color.

GX_SetTevColorIn (GX_TEVSTAGE1 , GX_CC_ZERO , GX_CC_CPREV , GX_CC_TEXC ,
GX_CC_ZERO) ;

GX_SetTevAlphaIn (GX_TEVSTAGE0 , GX_CA_ZERO , GX_CA_APREV , GX_CA_TEXA ,
GX_CA_ZERO) ;

GX_SetTevColorOp (GX_TEVSTAGE1 , GX_TEV_ADD , GX_TB_ZERO , GX_CS_SCALE_1 ,
GX_TRUE , GX_TEVPREV) ;

GX_SetTevAlphaOp (GX_TEVSTAGE1 , GX_TEV_ADD , GX_TB_ZERO , GX_CS_SCALE_1 ,
GX_TRUE , GX_TEVPREV) ;

Now we have to select the texture coordinates used in each stage. We
have to select one texture coordinate slot (of the eight available) and the
transform matrix. It’s possible to use a hardwired identity matrix, so there’s
no need to upload one.

GX_SetTexCoordGen (GX_TEXCOORD0 , GX_TG_MTX2x4 , GX_TG_TEX0 , GX_IDENTITY) ;
GX_SetTexCoordGen (GX_TEXCOORD1 , GX_TG_MTX2x4 , GX_TG_TEX1 , GX_IDENTITY) ;

Now we have to setup the TEX input so the rasterized colors from the
previous slots are passed to the TEVs. The operation selects the texture
coordinates slots and the texture itself (the texture load code is not shown
as it’s very large and doesn’t affect this explanation).

GX_SetTevOrder (GX_TEVSTAGE0 , GX_TEXCOORD0 , GX_TEXMAP0 , GX_COLORNULL) ;
GX_SetTevOrder (GX_TEVSTAGE1 , GX_TEXCOORD1 , GX_TEXMAP1 , GX_COLORNULL) ;

The diagram representing the previous steps is shown in Figure 6

8

Figure 6: Example showing a simple lightmap renderer using two textures
and no lighting. The first stage just passes the TEX input to the output
while the texture colors are multiplied in the second stage

3.2.2 Color rasterization

The rasterized color is presented to a TEV stage through the RAS input (Fig-
ure 5). It’s possible two choose between to color channels named COLOR0A0
and COLOR1A1. To specify which channel to present to the TEV stage we
use GX SetTevOrder.

When lighting is disabled the rasterized color can be either the content
of a register or the rasterized vertex color. The register is called Material
Color and can be specified with the function GX SetChanMatColor. In or-
der to choose between them we use GX SetChanCtrl passing GX SRC REG
or GX SRC VTX. Figure 7 shows a circuit describing the color calculation
process.

In order to be able to use two color channels it’s mandatory to supply
two vertex colors. If only one color is supplied the color is passed to channel
number zero, even if the color is supplied as channel 1 color.

Lighting adds complexity to the calculations. In fact the unlit model is a
particular case of the lit model with brightness at its maximum value. The
final color its calculated as follows (everything are colors and the dot product
is a component product):

Color = Material · LightFunc

9

Figure 7: Calculation of the RAS color present at the input of a TEV stage
when no lighting is used. It’s necessary to choose the color channel from the
two available and the color source, which can be register or vertex rasterized

Where Material is the unlit color (the one which comes from Material reg-
ister or rasterized vertex color) and LightFunc the amount of lighting. With
lighting disabled LightFunc is white color, so that Color equals Material.

The LightFunc is calculated as follows:

LightFunc = Ambient+

7∑
i=0

LightEnabledi · Attenuationi · DiffuseAttenuationi · Colori

The Ambient term is a color which can come from the vertex rasterized
color or a register (like Material). The register value can be specified using
GX SetChanAmbColor. Each light can be enabled or disabled for a given
channel, so if the light is disabled it doesn’t contribute to the lighting term.

The attenuation term is evaluated from zero to one indication how the
light contributes to the vertex illumination. It depends with the vertex-light
distance and can be controlled with the function family GX InitLightAttn*,
which allow to specify the attenuation function in a very flexible way (direc-
tional, positional, spotlight, etc.). It’s important to specify the light position
and direction using GX InitLightDir and GX InitLightPos.

The diffuse attenuation is a term calculated taking into account the angle
between the light and the surface normal, so it lights the polygon depending
on its angle. It’s controlled with GX SetChanCtrl, so it’s channel specific.
This means that it’s not possible to mix spot lights and positional or direc-
tional lights in the same channel.

10

The Color term is the color of the light and can be different for every
light. It can be specified with GX InitLightColor.

Figure 8 represents the lighting calculations.

Figure 8: Schematic representing lighting calculation process.

When lighting is disabled the lower subsystem is disabled so that the
output color is calculated from the material color. Note also that the diffuse
term depends on the channel number instead of the lighting object.

11

4 OpenGX implementation

GX and OpenGL are both finite state machines. But, since there are many
diferences between them, I haven’t established a relationship between their
states. Instead I’ve decided to keep the GL state in memory and update GX
state accordingly when needed.

The OpenGX state is stored in memory and includes: transform matrices,
state bits, textures, geometry data (pointers or data itself), lighting data
and any other status data (current color, texture, etc.). This state is used to
update the GPU state when needed. In order to avoid unnecessary transfers
the state also includes some dirty bits, which indicate the need to update
certain information. When GL state changes some bits may become dirty
and the rendering process cleans those bits by transferring and updating the
state.

The immediate mode is implemented using data pointers. There are
pointers for each data set: vertices, indices, normals, colors and texture
coordinates. The glVertex* calls are implemented by copying the data to
a temporary buffer and using glDrawArrays function to draw the data (at
glEnd). Each pointer has an integer value indicating the stride for the data
in the array. The glInterleavedArrays function is emulated using gl*Pointer
and glDrawArrays functions with the adequate pointers and strides.

The rendering process consists in a setup stage and a loop for the data
transfer. This data transfer consists in writing vertex data into GX’s FIFO.
The data is written interleaving its components (when no indices are used),
so using interleaved buffers should be faster than separated buffers rendering
(because of the cache). The data present in the arrays is used selectively
depending on the context: if texturing is disabled the texture coordinates are
ignored and not sent to the GPU (which is faster). Also if lighting is disabled
normals are not sent too. A little optimization is performed for vertex colors:
if the vertex color remains constant no color data is sent through the FIFO
and the GPU is instructed to use the constant color register.

4.1 Rendering cases

The implemented render setup depends in two main factors: lighting and
texturing.

12

4.1.1 Unlit and untextured render

When the lights and textures are disabled the color of the pixels is provided
by the vertex colors. In this case the setup will use one TEV stage which
takes the RAS input to the output (PREV register).

Figure 9: Unlit and untextured case.

4.1.2 Unlit and textured render

The final pixel color in this case is the product between the rasterized color
and the texture color. So only one TEV stage is used to multiply the RAS
input with the TEX input.

Figure 10: Unlit and textured case.

13

4.1.3 Lit and untextured render

The light color is calculated using two channel colors. We’re going to use
channel 0 to emulate ambient lights and channel 1 to emulate diffuse lights.
This decision is explained later. So we’ll use two TEV stages, the first for
rasterizing the channel zero and the second for rasterizing the channel one
and combine them.

Figure 11: Lit and untextured case.

4.1.4 Lit and textured render

Adding texturing to the lit case is just like adding texturing to the unlit case:
just multiply the result color by the texture color. This is done by adding
an extra stage at the end of the pipeline to multiply the color.

Figure 12: Unlit and untextured case.

14

As the time of writting I’ve just realized that it’s possible to use only two
stages by multiplying the texture color to each color channel before adding
them. Anyway this would be an optimization.

4.2 Lighting management

OpenGL has support for up to eight lights. Each light has a direction,
position, cutoff, etc. depending how the light behaves (it’s a point, a light
cone, a directional light...). But all the lights have three color components:
ambient, diffuse and specular. The ambient component only depends on the
distance of the light and the vertex. The diffuse component depends on the
distance (just like the ambient) but also depends on the light angle formed
by the light and the surface normal. Finally specular lights depend on the
distance as well and the angle formed by the light, the vertex and the viewer.

It’s important to remember that the diffuse attenuation factor of a light
is on a per channel basis instead by light. So we have to use one channel for
ambient lights and another one for diffuse lights. We exclude specular lighting
because there aren’t enough channels to compute the specular component.
For those reasons we are limiting the number of active lights to four. We’ll
use the four first GX lights to emulate ambient lighting and the other four
lights to emulate diffuse lighting.

The material stuff is done in CPU. We multiply the light color by the
material color and use the resulting color as light color. The global ambient
light, which is an additive light color without attenuation, is implemented
using the ambient color present in the lighting ecuation, although it could be
just added after as a constant color in a TEV stage (but this way we save a
TEV stage).

4.3 Texture management

Only 2D textures are implemented. The formats accepted by the imple-
mentation are mainly RGB and RGBA but also other special formats like
Luminance and compressed textures. The internal formats accepted by the
GPU are shown in Figure 13.

All formats without transparency are converted to RGB565, which saves
memory while having a good color quality. Using RGBA8 would be a waste of
memory without any quality gain. For transparent textures we use RGBA8
format, except for luminance-alpha textures, which are converted to IA8

15

Format Color depth Alpha support Compressed
GX TF RGB565 5/6 bits No No
GX TF RGBA8 8 bits 8 bits No
GX TF CMPR N/A 1 bit Yes
GX TF IA8 8 bits 8 bits No

Figure 13: Texture formats used by OpenGX

format. Luminance-alpha is a format with one transparency channel and
one color channel. All the color components (RGB) have the same value, so
it’s used in black and white textures with transparency such as text, shadows,
etc.

Compressed textures are only used for non-alpha textures because com-
pressed textures only have one bit for transparency (masking), which is not
enough. Therefore if the user requests compression on transparent textures
the request is ignored. The compression is performed using a DXT compres-
sor by Jonathan Dummer [4] with some specific modifications and big-endian
fixing.

Texture levels (used for mipmapping) are implemented in an efficient
way. If the user loads one texture level the implementation reserves memory
for that level only. If the user loads more levels the memory is resized to
accommodate all the levels. GX allows the programmer to specify a level
range for a specific texture, so we can have one level textures and multiple
level textures.

16

References

[1] Nintendo Revolution Graphics Library (GX) Version 1.00 2006.

[2] LibOGC Team? GX Subsystem Reference

[3] Jason Mitchell, Ian Bullard, Michael Tatro Multitexturing in DirectX 6

[4] Jonathan Dummer DXT compressor (http://nothings.org/)

17

